摘要
为深入分析降雨条件下透水沥青路面排水层内部渗流状况,更充分地发挥透水材料的渗透性能优势,对透水沥青路面的结构进行了优化。采用有限元软件SEEP/W,基于非饱和渗流理论分析了排水层在降雨过程中的内部渗流状况,针对影响排水层排水效率的结构性因素,提出了透水沥青路面的结构优化方案,并对该方案进行瞬态模拟。模拟结果表明,与常规方案相比,所提出的优化方案均在不增加排水层材料用量的情况下,大幅度提高了路面排水能力。其中,2%横坡路段,不等厚上面层模型和增设排水沟模型相较常规模型,在对降雨强度的适应能力方面分别提高了38.2%和158.8%;8%横坡路段,不等厚上面层模型和不等厚-增沟模型相较常规模型,在对降雨强度的适应能力方面分别提高了130.8%和234.6%。研究表明,对透水沥青路面结构进行的优化有效提高了其排水性能,增强了透水路面排水层对降雨的应对能力。
Abstract
In order to analyze the interior seepage of the porous asphalt pavement drainage layer in precipitation process deeply, and take better advantage of the permeability of porous materials, the structure of porous asphalt pavement was improved. Based on unsaturated flow theory, the interior seepage of the porous asphalt pavement drainage layer in precipitation process was analyzed with the FEM(Finite Element Model) software SEEP/W. Several improved structure design schemes were raised considering the structural factors that influence the drainage efficiency. The transient simulations of improved structure design schemes were conducted. The analysis result showed that these improved designs increased the drainage ability significantly without increasing the usage of porous material comparing with conventional schemes. With 2% cross slope, the drainage capacity of unequal thickness model and adding drainage ditch model were increased by 38.2% and 158.8% respectively. With 8% cross slope, the drainage capacity of unequal thickness model and unequal thickness-adding drainage ditch model were increased by 130.8% and 234.6% respectively. It is proved that these improved designs enhance the drainage capacity of porous pavement and the disposition effect to rainfall.
关键词
透水沥青路面 /
结构优化 /
非饱和渗流 /
有限元模型 /
不等厚面层
Key words
porous asphalt pavement /
improved structure /
unsaturated flow /
FEM(Finite ElementModel) /
unequal-thickness surface layer
庞志显,孟祥成.
基于有限元分析的透水沥青路面结构优化方案[J]. 交通运输研究. 2018, 4(4): 69-76
PANG Zhi-xian and MENG Xiang-cheng.
Improved Structural Design of Porous Asphalt Pavement Based on FEM[J]. Transport Research. 2018, 4(4): 69-76
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 季天剑. 降雨对轮胎与路面附着系数的影响[D]. 南京:东南大学,2004.
[2] 日本道路协会. 排水性铺装技术指针(案) [M]. 东京:丸善株式会社,1996.
[3] CHANDRAPPA A K,BILIGIRI K P. Comprehensive Investigation of Permeability Characteristics of Pervious Concrete: A Hydrodynamic Approach[J]. Construction & Building Materials, 2016, 123: 627-637.
[4] ARIZA P, BIRGISSON B. Evaluation of Water Flow through Pavement Systems[R]. Gainesville: Civil and Coastal Engineering Department, University of Florida, 2002: 1-125.
[5] 刘明. 路面结构排水特性的非饱和渗流数值模拟与分析[D]. 长沙:湖南大学,2007.
[6] TAN S A, FWA T F, CHAI K C, et al. Drainage Design of Porous Pavement System for Urban Runoff Control[C]// The Proceedings of 81th Annual Meeting of the Transportation Research Board. Washington D C: Transportation Research Board, 2002: 15.
[7] 中华人民共和国住房和城乡建设部. 透水沥青路面技术规程:CJJ/T 190—2012[S]. 北京:中国建筑工业出版社,2012.
[8] 马翔,倪富健,李强. 排水面层渗流模型及参数[J]. 东南大学学报(自然科学版),2014,44(2):381-385.
[9] 加拿大GEO-SLOPE国际有限公司. 非饱和土体渗流分析软件SEEP/W用户指南[M]. 北京:冶金工业出版社,2011.
[10] LU N,LIKOS W J. 非饱和土力学[M]. 韦昌富,侯龙,简文昌,译. 北京:高等教育出版社,2012.
[11] 周奇. SEEP/W在基于非饱和土理论的公路排水设计计算中的应用[J]. 中外公路,2009,29(6):42-46.
[12] 李辉. 开级配沥青磨耗层(OGFC) 排水性能研究[D]. 西安:长安大学,2016.
[13] 罗苏平,但汉成,李亮,等. 路面不等厚排水层设计[J]. 中南大学学报(自然科学版),2012,43(4):1499-1505.
[14] 但汉成,李亮,杨小礼,等. 基于渗流理论的沥青路面渗入率计算与分析[J].中南大学学报(自然科学版),2010,41(2):742-748.
[15] 诸永宁. 排水性沥青路面排水性能研究与排水设施的设计[D]. 南京:东南大学,2004.