
智能网联车辆编队控制研究综述
Review of Research on Connected and Automated Vehicles Platoon Control
智能网联车辆编队控制技术作为智能交通领域的前沿方向,其研究对提升交通效率、保障交通安全及降低能源消耗具有重要意义。鉴于此,从文献计量分析、编队控制场景需求分析、编队控制体系及测试验证4个维度出发,对智能网联车辆编队控制的研究现状进行全面、深入的剖析与总结。结果表明,该领域目前处于快速发展期,研究主题从基础模型向“技术融合-系统协同-场景应用”演进;场景需求分析显示,物流运输等4类宏观场景与跟驰控制等4类微观场景在控制目标与技术瓶颈上差异显著;控制体系方面,分层协同架构、模块化功能设计和多模态控制方法为解决编队控制问题提供了新思路;测试验证体系需构建“仿真测试-实车测试-指标评估”闭环。既有编队控制研究在复杂场景泛化、大规模编队控制效率及通信鲁棒性等方面存在挑战,未来研究需聚焦多模态融合自适应控制策略、分层分布式架构及虚实融合的测试体系等方向,推动智能网联车辆编队向高鲁棒性、全场景适配发展,为交通运输领域的数字化与智能化转型提供坚实支撑。
As a cutting-edge direction in the field of intelligent transportation, the research on connected and automated vehicles(CAV)platoon control technology is of great significance for improving traffic efficiency, ensuring traffic safety, and reducing energy consumption. Given this, the article comprehensively and deeply analyzes and summarizes the research status of CAV platoon control from four dimensions: bibliometric analysis, platoon control scenario requirement analysis, platoon control system, and test and verification. The research results indicate that the field is currently in a period of rapid development, with research topics evolving from basic models to Technology Fusion-System Collaboration-Scenario Application. The scenario requirement analysis shows that there are significant differences in control objectives and technical bottlenecks between four macro scenarios, including logistics transportation, and four micro scenarios, such as car-following control. In terms of control system, hierarchical collaborative architecture, modular functional design, and multimodal control methods provide new ideas for solving platoon control problems. The testing and verification system needs to establish a closed loop of Simulation Testing-Real Vehicle Testing-Indicator Evaluation. There are challenges in the existing research on platoon control in terms of complex scene generalization, large-scale platoon control efficiency, and communication robustness. Future research needs to focus on multimodal fusion adaptive control strategies, hierarchical distributed architectures, and virtual-real fusion testing systems to promote the development of CAV platoons towards high robustness and full scene adaptation, providing solid support for the digital and intelligent transformation of the transportation industry.
智能交通 / 智能网联车辆 / 编队控制 / 需求分析 / 测试验证
intelligent transportation / connected and automated vehicles / platoon control / requirement analysis / test and verification
[1] |
|
[2] |
丁飞, 张楠, 李升波, 等. 智能网联车路云协同系统架构与关键技术研究综述[J]. 自动化学报, 2022, 48(12):2863-2885.
|
[3] |
李乐, 刘美芳, 陈荣, 等. 基于边缘智能的车辆编队协同控制方法研究[J]. 计算机科学, 2024, 51(6):384-390.
|
[4] |
伍毅平, 赵子龙, 倪鹏. 智能网联卡车编队领航车驾驶人驾驶能力需求综述[J]. 中国公路学报, 2024, 37(2):219-238.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
赵柯帆, 裴晓飞, 陈祯福, 等. 基于多智能体模型预测(AMPC)的车辆横摆稳定性控制[J]. 汽车工程, 2025, 47(3): 481-488,507.
|
[13] |
高志军, 王江锋, 陈磊, 等. 基于智能网联车辆编队的高速公路协同合流控制方法[J]. 东南大学学报(自然科学版), 2022, 52(2): 335-343.
|
[14] |
|
[15] |
王羽, 曲婕. 智能驾驶发展现状及对地方开放智能驾驶车辆测试道路的建议[J]. 汽车工业研究, 2018(11):4-11.
|
[16] |
马威, 王乐怡, 夏晓敬, 等. 智能网联汽车道路测试政策法规分析及展望[J]. 交通运输研究, 2018, 4(6):14-23.
|
[17] |
石娟, 秦孔建, 郭魁元. 自动驾驶分级方法及相关测试评价技术研究[J]. 汽车工业研究, 2018(7):30-37.
|
[18] |
|
[19] |
|
[20] |
覃频频, 吴锋民, 张顺锋, 等. 考虑道路几何设计的智能网联车队横纵向协同控制[J]. 科学技术与工程, 2021, 21(3):1059-1065.
|
[21] |
|
[22] |
|
[23] |
|
[24] |
唐小林, 甘炯鹏, 张振果. 横纵向耦合跟车场景下基于多智能体深度强化学习的混合动力车队协同能量管理研究[J]. 机械工程学报, 2025, 61(2):236-246.
|
[25] |
赵祥模国家重点研发计划(2021YFB2501200)团队. 自动驾驶测试与评价技术研究进展[J]. 交通运输工程学报,2023, 23(6):10-77.
|
[26] |
杨皓宇, 孔伟伟, 赵享, 等. 高速公路强制换道场景下的车辆队列换道控制策略[J]. 汽车技术, 2024(11):1-9.
|
[27] |
邓辉, 张学艳, 胡金玲, 等. 基于车联网的车辆编队标准现状及展望[J]. 移动通信, 2022, 46(8): 86-91.
|
[28] |
吴超仲, 杨鑫炜, 贺宜, 等. 前馈多源信息下异构动力学卡车队列协同控制系统[J]. 交通运输工程学报, 2023, 23(1): 256-266.
|
[29] |
张富椿, 尹燕莉, 马永娟, 等. 网联混合动力汽车队列的生态驾驶与能量管理分层控制[J]. 汽车安全与节能学报, 2025, 16(1): 159-169.
|
[30] |
何林林, 胡宝雨. 异构线路下考虑组合策略的智能网联公交运行控制方法[J]. 交通运输研究, 2025, 11(1): 39-47,78.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
彭鹏. 量子通信技术在车联网中的应用探讨[J]. 江苏通信, 2022, 38(2):71-74.
|
[35] |
董长印, 熊卓智, 李霓, 等. 考虑减缓交通振荡的混合队列控制方法[J]. 交通运输工程学报, 2024, 24(6):212-229.
|
[36] |
|
[37] |
孙立山, 赵昇辉, 孔德文, 等. 自动驾驶环境下合流区大型车屏障判别条件及交通影响[J]. 北京工业大学学报, 2022, 48(8): 851-859.
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
张野, 张建国. 基于分布式滑模的智能网联汽车变车距队列控制[J]. 电子测量技术, 2020, 43(22):62-66.
|
[44] |
|
[45] |
|
[46] |
张紫微, 郑玲, 李以农, 等. 不可靠车载传输环境下的智能汽车轨迹跟踪控制方法[J]. 中国公路学报, 2023, 36(6):284-297.
|
[47] |
|
[48] |
|
[49] |
陈妍妍, 田大新, 林椿眄, 等. 端到端自动驾驶系统研究综述[J]. 中国图象图形学报, 2024, 29(11): 3216-3237.
|
[50] |
|
[51] |
|
[52] |
唐小林, 甘炯鹏, 张振果. 横纵向耦合跟车场景下基于多智能体深度强化学习的混合动力车队协同能量管理研究[J]. 机械工程学报, 2025, 61(2):236-246.
|
[53] |
|
[54] |
|
[55] |
|
[56] |
谢堂帅, 冯俊萍, 赵景波, 等. 无人驾驶汽车路径跟踪控制的算法综述[J]. 常州工学院学报, 2024, 37(3):11-17.
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
孙乐乐, 黄松, 郑长友, 等. 自动驾驶仿真测试场景生成技术研究进展[J]. 计算机工程与应用, 2025, 61(1):59-79.
|
[64] |
蒋拯民, 党少博, 李慧云, 等. 自动驾驶汽车场景测试研究进展综述[J]. 汽车技术, 2022(8):10-22.
|
[65] |
|
[66] |
邓辉, 张学艳, 胡金玲, 等. 基于车联网的车辆编队标准现状及展望[J]. 移动通信, 2022, 46(8):86-91.
|
[67] |
北京“五站两场”将开放接驳自动驾驶!八大场景已上路[J]. 中国产经, 2024(7):37-42.
|
[68] |
肖旭, 郭霖辉, 马文博, 等. 智能网联重型卡车编队行驶技术发展探讨[J]. 专用汽车, 2024(10):9-13.
|
/
〈 |
|
〉 |