交通运输科技领域研究现状与发展前沿知识图谱分析

朱硕, 袁泉, 杨超

交通运输研究 ›› 2025, Vol. 11 ›› Issue (3) : 55-70.

PDF(10278 KB)
PDF(10278 KB)
交通运输研究 ›› 2025, Vol. 11 ›› Issue (3) : 55-70. DOI: 10.16503/j.cnki.2095-9931.2025.03.006
理论与方法

交通运输科技领域研究现状与发展前沿知识图谱分析

作者信息 +

Analysis of Research Status and Development Frontier Knowledge Graph in the Field of Transportation Science and Technology

Author information +
文章历史 +

摘要

为了明确交通运输科技领域研究现状与发展前沿,基于文献计量分析方法,系统梳理了2020—2024年WOS核心数据库收录的59 440篇交通运输科技领域文献,并通过VOSviewer软件对发文量、发文区域、研究主题及研究趋势等进行知识图谱分析。研究结果表明:2020—2024年,中国成为发文量最大的国家,占比43.15%,美国、德国分列第二、三位;全球发文量前20研究机构中,中国机构占13席;国家及机构间合作密切,以中美合作为主。研究主题聚类为五大领域:车辆设备低碳化、自动驾驶及车辆协同感知、交通信息技术、综合交通安全管理与风险识别及交通信息安全研究等。通过分析高被引论文,进一步明确研究热点为:交通运输系统设计、网络性能优化及运营管理、综合交通通信安全与信号、自动驾驶轨迹预测及安全性、自动驾驶及车辆协同技术研究。在未来研究趋势上,将继续人工智能技术、可持续交通系统及交通网络韧性等方面的前沿探索,研究将呈现“技术-系统-社会”三维协同演进的特征,以人工智能、信息技术、绿色能源等科技为核心驱动,强调交通方式协同与韧性提升,同时注重以人为本与社会伦理约束。

Abstract

To clarify the research status and development frontier in the field of transportation science and technology, based on the bibliometric analysis method, 59 440 articles in the field of transportation science and technology included in the core database of WOS from 2020 to 2024 were systematically combed, and the knowledge graph analysis of the number of publications, publication areas, research themes and research trends was carried out through VOSviewer software. The results show that: from 2020 to 2024, China has become the largest contributor to the number of published papers, accounting for 43.15%, followed by the United States and Germany, ranking second and third, respectively; Among the top 20 research institutions in the world by publishing papers, Chinese institutions account for 13 seats; There is close cooperation between countries and institutions, mainly between China and the United States. The research themes are clustered into five major areas: low-carbon vehicle equipment, autonomous driving and vehicle cooperative perception research, traffic information technology, comprehensive traffic safety management and risk identification, and traffic information security research. Through the analysis of highly cited papers, it is further clarified that the research hotspots are: transportation system design, network performance optimization and operation management, integrated traffic communication safety and signaling, autonomous driving trajectory prediction and safety, autonomous driving and vehicle collaboration technology research. In the future, the research will continue to explore the frontiers of artificial intelligence technology, sustainable transportation system and transportation network resilience, and present the characteristics of "technology-system-society" three-dimensional collaborative evolution, driven by artificial intelligence, information technology, green energy and other technologies, emphasizing the coordination and resilience improvement of transportation modes, and focusing on people-oriented and social ethical constraints.

关键词

交通运输 / 知识图谱 / VOSviewer / 文献计量学 / 人工智能

Key words

transportation / knowledge graph / VOSviewer / bibliometrics / artificial intelligence

引用本文

导出引用
朱硕, 袁泉, 杨超. 交通运输科技领域研究现状与发展前沿知识图谱分析[J]. 交通运输研究. 2025, 11(3): 55-70 https://doi.org/10.16503/j.cnki.2095-9931.2025.03.006
ZHU Shuo, YUAN Quan, YANG Chao. Analysis of Research Status and Development Frontier Knowledge Graph in the Field of Transportation Science and Technology[J]. Transport Research. 2025, 11(3): 55-70 https://doi.org/10.16503/j.cnki.2095-9931.2025.03.006
中图分类号: U491.1   

参考文献

[1]
中共中央, 国务院. 交通强国建设纲要[Z]. 北京: 中共中央,国务院, 2019.
[2]
中共中央, 国务院. 国家综合立体交通网规划纲要[Z]. 北京: 中共中央,国务院, 2021.
[3]
中国工程科技知识中心, 交通运输部科学研究院. 交通运输科技发展前沿分析报告[R]. 北京: 中国工程科技知识中心, 2020.
[4]
何洪文, 孙逢春, 李梦林. 我国综合交通工程科技现状及未来发展[J]. 中国工程科学, 2023, 25(6):202-211.
[5]
边扬, 李玲, 韩唐姗, 等. TOD类型:研究成果回顾(英文)[J]. Journal of Southeast University (English Edition), 2021, 37(3):306-316.
[6]
李杰, 曾叙砜, 李平, 等. 道路交通安全文献的知识可视化综述[J]. 交通信息与安全, 2020, 38(1):13-19,26.
[7]
何峻岭, 韦凌翔, 左昊, 等. 低碳城市视角下的我国综合交通运输研究热点及趋势分析[C]// 中国城市规划学会城市交通规划专业委员会.绿色数智提质增效——2024年中国城市交通规划年会论文集,2024:2234-2246.
[8]
OLADIMEJI D, GUPTA K, KOSE N, et al. Smart transportation: An overview of technologies and applications[J]. Sensors, 2023, 23(8): 3880. DOI:10.3390/S23083880.
[9]
PEELAM M, NAREN, GERA M, et al. A review on emergency vehicle management for intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(11): 15229-15246.
[10]
赵博, 李海华, 杨小丽, 等. 基于文献计量分析水热炭处理重金属的研究现状及发展趋势[J]. 材料导报, 2023, 37(S2):129-138.
[11]
VAN ECK N, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538.
[12]
宗乾进, 袁勤俭, 沈洪洲, 等. 知识图谱视角下的2010年我国情报学研究热点——基于知识图谱的当代学科发展动向研究之一[J]. 情报杂志, 2011, 30(12):48-53.
[13]
YANG C, ZHA M, WANG W, et al. Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system[J]. IET Intelligent Transport Systems, 2020, 14(7): 702-711.
[14]
DANG Q, WU D, BOULET B. EV charging management with ANN-based electricity price forecasting[C]// 2020 IEEE Transportation Electrification Conference & Expo (ITEC). Chicago:IEEE, 2020: 626-630.
[15]
SHRIVASTAVA P, TEY K, MI Y, et al. Combined state of charge and state of energy estimation of lithium-ion battery using dual forgetting factor-based adaptive extended Kalman filter for electric vehicle applications[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1200-1215.
[16]
SHU X, SHEN J, LI G, et al. A flexible state-of-health prediction scheme for lithium-ion battery packs with long short-term memory network and transfer learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2238-2248.
[17]
QIAO P, BAKKAR Y, WU L, et al. Transportation resilience under Covid-19 uncertainty: A traffic severity analysis[J]. Transportation Research Part A: Policy and Practice, 2024, 179: 103947. https://doi.org/10.1016/j.tra.2023.103947.
[18]
SANCHEZ RODRIGUEZ O, FERENCHAK N. Longitudinal spatial trends in U.S. pedestrian fatalities, 1999-2020[J]. Transportation Research Record, 2024, 2678(5): 904-916.
[19]
WU G, HUANG C, HE D. Exploration of social-psychological factors leading to distracted e-bike riding among delivery workers in China[J]. Transportation Research Record, 2024, 2678(5): 127-137.
[20]
REED M, GREEN P. Comparison of driving performance on-road and in a low-cost simulator using a concurrent telephone dialling task[J]. Ergonomics, 1999, 42(8): 1015-1037.
[21]
HUANG Y, DU J, YANG Z, et al. A survey on trajectory-prediction methods for autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2022, 7(3): 652-674.
[22]
ARNOLD E, DIANATI M, DE TEMPLE R, et al. Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1852-1864.
[23]
XIA X, MENG Z, HAN X, et al. An automated driving systems data acquisition and analytics platform[J]. Transportation Research Part C: Emerging Technologies, 2023, 151: 104120. DOI:10.1016/J.TRC.2023.104120.
[24]
NING Z, ZHANG K, WANG X, et al. Intelligent edge computing in Internet of Vehicles: A joint computation offloading and caching solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2212-2225.
[25]
NING Z, ZHANG K, WANG X, et al. Joint computing and caching in 5G-envisioned Internet of Vehicles: A deep reinforcement learning-based traffic control system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 5201-5212.
[26]
GUO K, LIU R, LI X, et al. Outage performance of RIS-assisted cognitive non-terrestrial network with NOMA[J]. IEEE Transactions on Vehicular Technology, 2024, 73(4): 5953-5958.
[27]
ZHOU X, HE D, KHAN M, et al. An efficient blockchain-based conditional privacy-preserving authentication protocol for VANETs[J]. IEEE Tran-sactions on Vehicular Technology, 2023, 72(1): 81-92.
[28]
DAI X, VALLATI M, GUO R, et al. The road ahead: DAO-secured V2X infrastructures for safe and smart vehicular management[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(12): 4674-4677.
[29]
WANG A, YE Y, SONG X, et al. Traffic prediction with missing data: a multi-task learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4189-4202.
[30]
YANG C, YU C, DONG W, et al. Substitutes or complements? Examining effects of urban rail transit on bus ridership using longitudinal city-level data[J]. Transportation Research Part A: Policy and Practice, 2023, 174: 103728. https://doi.org/10.1016/j.tra.2023.103728.
[31]
VAN'T VEER R, ANNEMA J, ARAGHI Y, et al. Mobility-as-a-Service (MaaS): A latent class cluster analysis to identify Dutch vehicle owners′ use intention[J]. Transportation Research Part A: Policy and Practice, 2023, 169: 103608. https://doi.org/10.1016/j.tra.2023.103608.
[32]
PENG B, ZHANG Y, LI C, et al. Nonlinear, threshold and synergistic effects of first/last-mile facilities on metro ridership[J]. Transportation Research Part D: Transport and Environment, 2023, 121: 103856. https://doi.org/10.1016/j.trd.2023.103856.
[33]
ABDULJABBAR R, LIYANAGE S, DIA H. The role of micro-mobility in shaping sustainable cities: A systematic literature review[J]. Transportation Research Part D: Transport and Environment, 2021, 92: 102734. https://doi.org/10.1016/j.trd.2021.102734.
[34]
KUUTTI S, BOWDEN R, JIN Y, et al. A survey of deep learning applications to autonomous vehicle control[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 712-733.
[35]
JIANG Y, XU X, GAO H, et al. LBlockchainE: A lightweight blockchain for edge IoT-enabled maritime transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 2307-2321.
[36]
MA Y, NIE Z, HU S, et al. Fault detection filter and controller co-design for unmanned surface vehicles under DoS attacks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1422-1434.
[37]
MOZAFFARI S, AL-JARRAH O, DIANATI M, et al. Deep learning-based vehicle behavior prediction for autonomous driving applications: A review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 33-47.
[38]
KUZNIEZTSOV A, GYEVNAR B, WANG C, PETERS S, ALBRECHT S V. Explainable AI for safe and trustworthy autonomous driving: A systematic review[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 19342-19364.
[39]
FENG D, HAASE-SCHUETZ C, ROSENBAUM L, et al. Deep multi-modal object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1341-1360.
[40]
CHU T, WANG J, CODECÀ L, et al. Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1086-1095.
[41]
NOOR-A-RAHIM M, LIU Z, LEE H, et al. 6G for Vehicle-to-Everything (V2X) communications: Enabling technologies, challenges, and opportunities[J]. Proceedings of the IEEE, 2022, 110(6): 712-734.
[42]
RAWSON A, BRITO M. A survey of the opportunities and challenges of supervised machine learning in maritime risk analysis[J]. Transport Reviews, 2022, 43(1): 108-130.
[43]
ISLAM Z, ABDEL-ATY M. Traffic conflict prediction using connected vehicle data[J]. Analytic Methods in Accident Research, 2023, 39: 100275. https://doi.org/10.1016/j.amar.2023.100275.
[44]
SPENGLER L, GÖSSWEIN E, KRANEFELD I, et al. From modeling to optimizing sustainable public transport: A new methodological approach[J]. Sustainability, 2023, 15(10): 8171. https://doi.org/10.3390/su15108171.
[45]
SO J J, CHAE M, HONG J, et al. Integrated mobility hub location selection for sustainable urban mobility[J]. Sustainable Cities and Society, 2023, 99: 104950. https://doi.org/10.1016/j.scs.2023.104950.
[46]
肖建力, 邱雪, 张扬, 等. 交通大模型综述[J]. 交通运输工程学报, 2025, 25(1):8-28.
[47]
凤振华, 王雪成, 欧阳斌, 等. 面向2060年的我国交通运输绿色转型战略与路径[J]. 交通运输研究, 2024, 10(6):57-67.

PDF(10278 KB)

Accesses

Citation

Detail

段落导航
相关文章

/