智能网联新能源汽车供应链韧性评估方法

程茜伶, 王礼刚, 蔡晓禹, 陈坚

交通运输研究 ›› 2025, Vol. 11 ›› Issue (3) : 43-54.

PDF(2394 KB)
PDF(2394 KB)
交通运输研究 ›› 2025, Vol. 11 ›› Issue (3) : 43-54. DOI: 10.16503/j.cnki.2095-9931.2025.03.005
理论与方法

智能网联新能源汽车供应链韧性评估方法

作者信息 +

Resilience Evaluation Method for Intelligent Connected and New Energy Vehicle Supply Chain

Author information +
文章历史 +

摘要

为衡量智能网联新能源汽车供应链面对外部干扰时保持稳定性的能力,提出了供应链韧性评估方法。首先,考虑智能网联新能源汽车供应链研发、供应、生产、销售、售后等5个环节的抗风险能力,从单一环节抵抗能力与多环节协调能力两个维度提出供应链韧性测度框架;然后,采用熵权-TOPSIS法、耦合协调模型、K-means聚类算法进行供应链韧性的量化评价和等级划分,并基于12个地区的发展数据开展实证研究;最后,通过指标障碍度模型分析供应链韧性的主要影响因素。结果表明:各地区供应链韧性水平总体差距较大,广东、江苏、上海、浙江在供应链各环节的表现领先;高韧性地区与低韧性地区的差距主要来源于供应链上游环节,两者在零部件配套方面的差距最为显著,但在后市场服务保障方面的差距较小;大多地区的供应链处于濒临失衡及以下状态,且足够强的风险抵抗能力伴随着较强的协调能力;维修保养企业聚集密度、经销商聚集密度、专利发布数量、零部件供应商数量、新能源汽车产量是影响供应链韧性的主要因素。因此,各地区在扩大产业规模的同时要注重各环节能力的协调互补,避免因供应链失衡而阻碍供应链效能的提升。

Abstract

To measure the ability of the intelligent connected and new energy vehicle supply chain to maintain stability in the face of external disturbances, a supply chain resilience assessment method is proposed. Firstly, considering the risk resistance capability of the five links of research and development, supply, production, sale, and after-sale in the intelligent connected and new energy vehicle supply chain, a supply chain resilience measurement framework is proposed from two dimensions: single link resistance capability and multi link coordination capability. Then, the entropy weight TOPSIS method, coupled coordination degree model, and K-means clustering algorithm are used to quantitatively evaluate and classify the resilience of the supply chain. And based on the development data of 12 regions, case analysis is conducted. Finally, the main influencing factors of supply chain resilience are identified through the indicator obstacle degree model. The results indicate that there is a significant overall gap in the resilience level of supply chains among different regions, with Guangdong, Jiangsu, Shanghai, and Zhejiang showing leading performances in various links of the supply chain; the gap between high resilience areas and low resilience areas mainly comes from the upstream links of the supply chain, with the most significant difference in component matching between the two, but the gap in post market service guarantee is small; the supply chain in most regions is on the brink of imbalance or below, and strong risk resistance is accompanied by strong coordination ability; the main factors affecting the resilience of the supply chain are the clustering density of maintenance and repair enterprises, the clustering density of dealers, the number of patent publications, the number of component suppliers, and the output of new energy vehicles. Therefore, while expanding the industrial scale in various regions, attention should be paid to the coordination and complementarity of capabilities in each link, in order to avoid hindering the improvement of supply chain efficiency due to supply chain imbalance.

关键词

智能交通 / 供应链韧性 / 熵权-TOPSIS模型 / 耦合协调度 / 智能网联新能源汽车

Key words

intelligent transportation / supply chain resilience / entropy weight TOPSIS model / coupling coordination degree / intelligent connected and new energy vehicle

引用本文

导出引用
程茜伶, 王礼刚, 蔡晓禹, . 智能网联新能源汽车供应链韧性评估方法[J]. 交通运输研究. 2025, 11(3): 43-54 https://doi.org/10.16503/j.cnki.2095-9931.2025.03.005
CHENG Xiling, WANG Ligang, CAI Xiaoyu, et al. Resilience Evaluation Method for Intelligent Connected and New Energy Vehicle Supply Chain[J]. Transport Research. 2025, 11(3): 43-54 https://doi.org/10.16503/j.cnki.2095-9931.2025.03.005
中图分类号: U491.1   

参考文献

[1]
魏际刚, 王超. 构建安全韧性的新能源汽车全球供应链体系[J]. 新经济导刊, 2024(11):42-49.
[2]
CHRISTOPHER M, PECK H. Building the resilient supply chain[J]. International Journal of Logistics Management, 2004, 15(2): 1-13.
[3]
曾宪奎. 在高质量发展中提升产业链供应链韧性和安全水平[J]. 宁夏社会科学, 2023(2):101-107.
[4]
江英, 隋广军, 杨永聪. 自贸试验区建设助推产业链供应链韧性提升的机理及路径——以粤港澳大湾区为例[J]. 国际贸易, 2023(6):55-63.
[5]
郭健. 农业产业链韧性测度与时空演化研究[D]. 南京: 南京工业大学, 2024.
[6]
綦方中, 张磊磊. 基于改进灰色预测模型的供应链韧性评价与预警研究[J]. 工业技术经济, 2022, 41(12):100-107.
[7]
王泽宇, 唐云清, 韩增林, 等. 中国沿海省份海洋船舶产业链韧性测度及其影响因素[J]. 经济地理, 2022, 42(7):117-125.
[8]
HUANG Z, ZHOU Y, LIN Y, et al. Resilience evaluation and enhancing for China′s electric vehicle supply chain in the presence of attacks: A complex network analysis approach[J]. Computers & Industrial Engineering, 2024, 195: 110416. DOI: 10.1016/j.cie.2024.110416
[9]
KIM Y, CHEN Y, LINDERMAN K. Supply network disruption and resilience: A network structural perspective[J]. Journal of Operations Management, 2015, 33-34(1): 43-59.
[10]
贺远琼, 欧阳航, 孟家琪. 我国区域供应链韧性测度及时空分异特征研究[J/OL]. 软科学, 2025:1-17. (2025-03-11)[2025-06-17]. http://kns.cnki.net/kcms/detail/51.1268.g3.20250310.1706.006.html.
[11]
卢昱嘉, 陈秧分, 吴振磊. 全球供应链风险评估与韧性测度——以大豆为例[J]. 地理学报, 2024, 79(10):2651-2669.
[12]
张义博. 产业链安全内涵与评价体系[J]. 中国经贸导刊, 2021(10):55-59.
[13]
盛朝迅. 新发展格局下推动产业链供应链安全稳定发展的思路与策略[J]. 改革, 2021(2):1-13.
[14]
王晓红, 郭霞. 新冠疫情后我国产业链外移及产业链竞争力研究——以集成电路产业链为例[J]. 国际贸易, 2020(11):18-27.
[15]
李伟, 贺俊. 基于能力视角的产业链安全内涵、关键维度和治理战略[J]. 云南社会科学, 2022(4):102-110.
[16]
陈晓东, 杨晓霞. 数字经济可以实现产业链的最优强度吗?——基于1987—2017年中国投入产出表面板数据[J]. 南京社会科学, 2021(2):17-26.
[17]
宋华. 中国供应链韧性建设与高质量发展:内涵、机制与路径[J]. 供应链管理, 2023, 4(9):5-24.
[18]
蓝婷婷, 邵留国. 中国清洁能源金属产业链供应链韧性评估[J]. 资源科学, 2025, 47(4):891-906.
[19]
马潇宇, 黄明珠, 杨朦晰. 供应链韧性影响因素研究:基于SEM与fsQCA方法[J]. 系统工程理论与实践, 2023, 43(9):2484-2501.
[20]
SIAGIAN H, TARIGAN Z, JIE F. Supply chain integration enables resilience, flexibility, and innovation to improve business performance in COVID-19 era[J]. Sustainability, 2021, 13(9): 4669. DOI: 10.3390/su13094669.
[21]
宋华, 陈思洁. 供应链网络惯性与供应链动态能力[J]. 北京交通大学学报(社会科学版), 2017, 16(4):80-87.
[22]
袁中华, 李佩宁, 万欢. 新质生产力视域下制造业产业链供应链韧性测度——以广西为例[J/OL]. 新疆师范大学学报(哲学社会科学版).(2025-05-07)[2025-06-17]. https://doi.org/10.14100/j.cnki.65-1039/g4.20250506.001.
[23]
宋跃刚, 王紫琪. 新质生产力与制造业产业链供应链韧性:理论分析与实证检验[J]. 河南师范大学学报(自然科学版), 2024, 52(5):29-42.
[24]
朱永光, 张伍丰, 王迪, 等. 中国铜资源产业链供应链韧性评价[J]. 资源科学, 2023, 45(9):1761-1777.
[25]
张娇, 苏洋, 刘维忠, 等. 中国棉花产业链韧性评估及影响因素分析[J]. 棉花学报, 2024, 36(5):408-419.
[26]
ROY R, GAIN A, SAMAT N, et al. Resilience of coastal agricultural systems in Bangladesh: Assessment for agroecosystem stewardship strategies[J]. Ecological Indicators, 2019, 106:105-120. DOI: 10.1016/j.ecolind.2019.105525
[27]
吕越, 邓利静. 着力提升产业链供应链韧性与安全水平——以中国汽车产业链为例的测度及分析[J]. 国际贸易问题, 2023(2):1-19.
[28]
樊雪梅, 卢梦媛. 新冠疫情下汽车企业供应链韧性影响因素及评价[J]. 工业技术经济, 2020, 39(10):21-28.
[29]
翁钢民, 唐亦博, 潘越, 等. 京津冀旅游—生态—城镇化耦合协调的时空演进与空间差异[J]. 经济地理, 2021, 41(12):196-204.
[30]
周碧华, 吴秋明. 基于AHP的产业集群综合评价指标体系研究[J]. 现代管理科学, 2006(2):66-68,115.
[31]
菲利普·科特勒, 洪瑞云, 梁绍明, 等. 市场营销管理(亚洲版·第二版)[M]. 梅清豪,译. 北京: 中国人民大学出版社, 2003.
[32]
沈国兵. 中国重点产业链供应链行业产品进口韧性评估[J]. 广西师范大学学报(哲学社会科学版), 2025, 61(3):96-113.
[33]
AHMADI S, SABOOHI Y, VAKILI A. Frameworks, quantitative indica-tors, characters, and modeling approaches to analysis of energy system resilience: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 144:110988. DOI: 10.1016/j.rser.2021.110988.
[34]
张秀艳, 白雯, 郑雪. 我国区域经济韧性的关联识别与演化特征分析[J]. 吉林大学社会科学学报, 2021, 61(1):90-101.
[35]
刘玒玒, 刘书芳. 祁连山地区复合生态系统韧性时空演化及障碍因子识别[J]. 干旱区地理, 2024, 47(2):237-247.
[36]
栗欣如, 姜文来, 冯欣. 我国水利绿色发展水平测算分析[J]. 中国农业资源与区划, 2021, 42(1):7-17.
[37]
郑明贵, 倪京生, 罗来文, 等. 中国石油资源产业链供应链安全评价[J]. 中国矿业, 2025, 34(2):99-110.
[38]
智慧芽. 专利检索数据库[DB/OL].(2024-12-29)[2025-02-11]. https://www.zhihuiya.com/.
[39]
盖世汽车. 配套企业库[DB/OL].(2024-07-31)[2025-02-05]. https://auto.gasgoo.com/.
[40]
太平洋汽车. 经销商数据库[DB/OL]. (2025-01-30)[2025-02-24]. https://www.pcauto.com.cn/.
[41]
天眼查. 企业库[DB/OL]. (2025-02-30)[2025-03-10]. https://www.tianyancha.com/.
[42]
汽车人才研究会. 中国汽车产业从业者不少于2228万人,研发工程师不少于114.2万人![EB/OL].(2024-07-09)[2025-03-10]. https://mp.weixin.qq.com/s/qCz7i7vmz6LydihJ9a8leQ.
[43]
中国充电联盟. 2024年全国电动汽车充换电基础设施运行情况[EB/OL].(2025-01-23)[2025-02-25]. https://mp.weixin.qq.com/s/WYrM2YdywHRaZR79Ku6dZw.

基金

重庆市哲学社会科学创新工程重点项目(2024CXZD26)

PDF(2394 KB)

Accesses

Citation

Detail

段落导航
相关文章

/