
混合交通流下高速公路虚拟应急车道管控策略
Virtual Emergency Lane Control Strategy for Expressways under Mixed Traffic Flow Conditions
为提升高速公路应急车道的灵活性及车道资源利用率,并适应含智能网联车辆(Connected and Automated Vehicles, CAV)的混合交通流,提出了一种虚拟应急车道管控策略。首先,基于应急车辆优先的动态路权分配机制,建立事故位置主导的右侧车道动态开放模型;接着,采用元胞自动机构建含有应急车辆的混合交通流仿真模型;最后,通过MATLAB仿真平台对实际4车道高速公路设定不同交通密度和智能网联小汽车比例,验证该策略的可行性和有效性。仿真结果表明:与传统固定应急车道策略相比,该策略可显著提升交通通行能力;当卡车占车辆总数的20%、CAV占小汽车数量的30%时,系统流量峰值可达8 902.8 pcu/h,较传统策略提升30.2%,低中等密度(0~80 veh/km)范围内,拥堵车辆比例降低10%~27%;此外,在不同CAV比例下,该策略的通行能力均优于传统方案,系统平均通行能力提升约32%,最高提升幅度达36.6%。结果表明,该策略在提升道路通行能力和抗拥堵能力方面具有显著效果。
In order to enhance the flexibility of emergency lanes on expressways, improve lane resources utilization, and adapt to the mixed traffic flow containing Connected and Automated Vehicles (CAV), a virtual emergency lane control strategy is proposed in the study. Firstly, the study establishes a dynamic right lane opening model dominated by the accident location based on the dynamic right-of-way allocation mechanism of emergency vehicles priority. Then, it adopts cellular automata to construct a mixed traffic flow simulation model containing emergency vehicles. Finally, different traffic densities and proportions of CAV are set for the actual four-lane expressway through the MATLAB simulation platform, to verify the feasibility and validity of the strategy.The simulation results show that compared with the traditional fixed emergency lane strategy, this strategy can significantly improve the traffic capacity. As trucks account for 20% of the total vehicles, and CAV account for 30% of the cars (including HV), the peak system traffic flow can reach 8 902.8 pcu/h, which is 30.2% higher than the traditional strategy; the proportion of congestion is reduced by 10%~27% in the range of low to medium density (0~80 veh/km). In addition, under different CAV ratios, the traffic capacity of this strategy is superior to traditional scheme, with an average system capacity improvement of about 32% and a maximum improvement of 36.6%. The results show that the strategy has a significant effect in improving the highway capacity and congestion resistance.
智能交通 / 虚拟应急车道 / 元胞自动机 / 高速公路 / 管控策略
intelligent transportation / virtual emergency lane / cellular automata / expressway / control strategy
[1] |
中共中央, 国务院. 交通强国建设纲要[Z]. 北京: 中共中央,国务院, 2019.
|
[2] |
中共中央, 国务院. 国家综合立体交通网规划纲要[Z]. 北京: 中共中央,国务院, 2021.
|
[3] |
唐进君, 胡立鹏, 李明洋, 等. 基于Kriging遗传算法的高速公路应急车道管控优化[J]. 系统仿真学报, 2024, 36(5):1165-1178.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
秦严严, 朱宜文, 朱立, 等. 智能网联卡车车队混合流通行能力分析方法[J]. 交通运输系统工程与信息, 2022, 22(4):275-282.
|
[10] |
赵韩涛, 马国胜, 毛宏燕. 基于元胞自动机模型的应急车辆行程时间[J]. 长安大学学报(自然科学版), 2015, 35(2):132-137,144.
|
[11] |
|
[12] |
|
[13] |
陈雅楠, 李美玲, 李广惠, 等. 高速公路改扩建应急车道综合利用仿真研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(1):38-43.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
交通运输部. 道路交通标志和标线第1部分:总则:GB 5768.1—2025[S]. 北京: 中国标准出版社, 2025.
|
[19] |
钱勇生, 杨紫龙, 曾俊伟, 等. 考虑混入自动驾驶车辆的机非混合交通流元胞自动机仿真[J/OL]. 计算机工程与应用.(2025-05-21)[2025-06-01]. http://kns.cnki.net/kcms/detail/11.2127.TP.20250520.1736.026.html.
|
[20] |
杨秀建, 黄菁菁, 王曦. 考虑CACC汽车队列动态特性的混合交通流建模与仿真[J]. 系统仿真学报,2025,37(6):1388-1399.
|
[21] |
吕伟, 黄广琛, 汪京辉. 基于元胞自动机的高速公路瓶颈交通演化仿真[J]. 交通运输系统工程与信息, 2022, 22(3):293-302.
|
[22] |
|
[23] |
|
[24] |
邱小平, 马丽娜, 周小霞, 等. 基于安全距离的手动—自动驾驶混合交通流研究[J]. 交通运输系统工程与信息, 2016, 16(4):101-108,124.
|
/
〈 |
|
〉 |