智能网联环境下无信控交叉口自动控制模型

柳祖鹏, 张槐玲, 何雅琴

交通运输研究 ›› 2025, Vol. 11 ›› Issue (3) : 12-22.

PDF(2993 KB)
PDF(2993 KB)
交通运输研究 ›› 2025, Vol. 11 ›› Issue (3) : 12-22. DOI: 10.16503/j.cnki.2095-9931.2025.03.002
理论与方法

智能网联环境下无信控交叉口自动控制模型

作者信息 +

Autonomous Control Model for Unsignalized Intersections in Intelligent Connected Environment

Author information +
文章历史 +

摘要

在智能网联环境下,为提升车辆通过无信控交叉口的安全性、高效性与舒适性,提出一种无信控交叉口智能网联车辆的冲突消解模型,以实现车辆通过交叉口次序的全局优化。首先,基于进入控制区和离开控制区的时间推导车辆到达各冲突区的安全时间间隔,对存在潜在冲突的车辆构建虚拟车队并建立冲突约束。其次,基于最大速度和加速度进行车辆最小行程时间推导,再以车辆总延误最小为目标构建冲突消解的非线性时序优化模型;针对车辆急加、减速问题,基于时序优化模型的结果,将车辆在控制区的初始状态和末端状态作为初始数据,利用最优控制理论进行轨迹优化。最后,通过 Traci 接口对 SUMO 进行二次开发以建立仿真场景并对所建模型进行仿真验证。结果表明,模型在不同交通量下的优化效果均优于“先到先服务”控制方法,车辆的平均行程时间和平均损失时间分别降低44.67% 和 78.33%;在轨迹优化方法的控制下,加速度干扰值降低了 55.5%,能使车辆在冲突消解模型的控制下平滑地完成加减速过程,有效提升了交叉口行车舒适性。

Abstract

In the intelligent connected environment, to enhance the safety, efficiency and comfort of vehicles passing through uncontrolled intersections, a conflict resolution model for intelligent connected vehicles at unsignalized intersections was proposed to achieve the global optimization of vehicle passage timing at intersections. Firstly, based on the time of entering and leaving the control zone, the safe time intervals for vehicles to reach each conflict zone were derived, and virtual fleets were constructed for vehicles with potential conflicts and conflict constraints were established. Then, the minimum travel time of vehicles was derived based on the maximum speed and acceleration, and a nonlinear timing optimization model for conflict resolution was constructed with the objective of minimizing the total vehicle delay. Regarding the problem of sudden acceleration and deceleration of vehicles, based on the results of the timing optimization model, the initial and terminal state of the vehicle in the control area were taken as the initial data, and the optimal control theory was used to optimize the trajectory. Finally, the SUMO was redeveloped through the Traci interface to establish a simulation scenario and verify the proposed model through simulation. The results show that the proposed model has better optimization effects than the "first come, first served" control method under different traffic volumes.The average travel time and average loss time of vehicles are reduced by 44.67% and 78.33% respectively. Under the control of the trajectory optimization method, the acceleration interference value is reduced by 55.5%, which enables vehicles to smoothly complete the acceleration and deceleration process under the control of the conflict resolution model, effectively improving the intersection passage efficiency and driving comfort.

关键词

交通管理 / 智能网联 / 冲突消解 / 轨迹优化 / 最优控制 / SUMO微观仿真

Key words

traffic management / intelligent connected / conflict resolution / trajectory optimization / optimal control / SUMO microscopic simulation

引用本文

导出引用
柳祖鹏, 张槐玲, 何雅琴. 智能网联环境下无信控交叉口自动控制模型[J]. 交通运输研究. 2025, 11(3): 12-22 https://doi.org/10.16503/j.cnki.2095-9931.2025.03.002
LIU Zupeng, ZHANG Huailing, HE Yaqin. Autonomous Control Model for Unsignalized Intersections in Intelligent Connected Environment[J]. Transport Research. 2025, 11(3): 12-22 https://doi.org/10.16503/j.cnki.2095-9931.2025.03.002
中图分类号: U491.23   

参考文献

[1]
段超睿. 基于经验贝叶斯方法的事故黑点平面交叉口识别[D]. 南京: 东南大学, 2021.
[2]
朱少杰, 王文格. 快速路匝道入口智能网联车协同合并控制研究[J]. 计算机应用研究, 2023, 40(9):2755-2759.
[3]
陈志军, 张晶明, 熊盛光, 等. 智能网联车辆生态驾驶研究现状及展望[J]. 交通信息与安全, 2022, 40(4):13-25.
[4]
吴官朴, 杨昱, 赵阳, 等. 生态驾驶在智能网联汽车中的应用综述[J]. 汽车文摘, 2020(7):9-16.
[5]
蒋阳升, 蒋浩然, 姚志洪, 等. 基于虚拟车队的自动交叉路口车辆时序优化模型[J]. 中国公路学报, 2022, 35(8):291-303.
[6]
DRESNER K, STONE P. Multiagent traffic management: A reservation-based intersection control mechanism[C]// Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2004. New York: IEEE, 2004: 530-537.
[7]
马庆禄, 张梓轩, 黄筱潇, 等. 智能网联环境下无信号交叉口交通自组织方法[J]. 公路, 2023, 68(2):168-177.
[8]
BELKHOUCHE F. Collaboration and optimal conflict resolution at an unsignalized intersection[J]. IEEE Transactions on Intelligent Transportation Sy-stems, 2019(6): 2301-2312.
[9]
HE Z, ZHENG L, LU L, et al. Erasing lane changes from roads: A design of future road intersections[J]. IEEE Transactions on Intelligent Vehicles, 2018, 3(2): 173-184.
[10]
吴伟, 刘洋, 刘威, 等. 自动驾驶环境下交叉口车辆路径规划与最优控制模型[J]. 自动化学报, 2020, 46(9):1971-1985.
[11]
王莹然. 无信号交叉口自动驾驶车辆通行方法研究[D]. 兰州: 兰州交通大学, 2023.
[12]
陈壮壮, 罗莉华. 网联自动驾驶车辆通过信号交叉口的速度轨迹优化[J]. 交通信息与安全, 2021, 39(4):92-98,156.
[13]
张名芳, 李慢, 陈子凡, 等. 人机混驾环境下无信号交叉口自动驾驶汽车左转运动规划研究[J]. 中国公路学报, 2021, 34(7):67-78.
[14]
柳祖鹏, 舒玉娇, 何雅琴. 智能网联环境下无信控交叉口冲突避碰模型研究[J/OL]. 武汉理工大学学报(交通科学与工程版). (2024-04-10)[2025-03-10]. http://kns.cnki.net/kcms/detail/42.1824.U.20240409.1418.086.html.
[15]
张游, 潘福全, 张丽霞, 等. 车路协同环境下智能交叉口车速控制[J]. 控制理论与应用, 2022, 39(6):1057-1064.
[16]
缑新科, 杨宏斌. 最优模糊控制在悬臂梁振动控制系统中的研究[J]. 电气自动化, 2012, 34(1):11-13.
[17]
柳祖鹏, 黄镓法, 王道斌. 基于合作博弈的合流区加速路段智能网联汽车协同控制[J]. 交通运输研究, 2023, 9(6):34-43.
[18]
景首才. 智能车路网联的合流区车辆协同控制方法研究[D]. 西安: 长安大学, 2020.
[19]
NTOUSAKIS I, NIKOLOS I, PAPAGEORGIOU M. Optimal vehicle trajectory planning in the context of cooperative merging on highways[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 464-488.
[20]
李林, 徐建闽, 叶凡. 基于道路平面线形的加速度干扰模型研究[J]. 中外公路, 2010, 30(2):18-21.

基金

国家自然科学基金项目(52472329)

PDF(2993 KB)

Accesses

Citation

Detail

段落导航
相关文章

/