
智能网联环境下无信控交叉口自动控制模型
Autonomous Control Model for Unsignalized Intersections in Intelligent Connected Environment
In the intelligent connected environment, to enhance the safety, efficiency and comfort of vehicles passing through uncontrolled intersections, a conflict resolution model for intelligent connected vehicles at unsignalized intersections was proposed to achieve the global optimization of vehicle passage timing at intersections. Firstly, based on the time of entering and leaving the control zone, the safe time intervals for vehicles to reach each conflict zone were derived, and virtual fleets were constructed for vehicles with potential conflicts and conflict constraints were established. Then, the minimum travel time of vehicles was derived based on the maximum speed and acceleration, and a nonlinear timing optimization model for conflict resolution was constructed with the objective of minimizing the total vehicle delay. Regarding the problem of sudden acceleration and deceleration of vehicles, based on the results of the timing optimization model, the initial and terminal state of the vehicle in the control area were taken as the initial data, and the optimal control theory was used to optimize the trajectory. Finally, the SUMO was redeveloped through the Traci interface to establish a simulation scenario and verify the proposed model through simulation. The results show that the proposed model has better optimization effects than the "first come, first served" control method under different traffic volumes.The average travel time and average loss time of vehicles are reduced by 44.67% and 78.33% respectively. Under the control of the trajectory optimization method, the acceleration interference value is reduced by 55.5%, which enables vehicles to smoothly complete the acceleration and deceleration process under the control of the conflict resolution model, effectively improving the intersection passage efficiency and driving comfort.
交通管理 / 智能网联 / 冲突消解 / 轨迹优化 / 最优控制 / SUMO微观仿真
traffic management / intelligent connected / conflict resolution / trajectory optimization / optimal control / SUMO microscopic simulation
[1] |
段超睿. 基于经验贝叶斯方法的事故黑点平面交叉口识别[D]. 南京: 东南大学, 2021.
|
[2] |
朱少杰, 王文格. 快速路匝道入口智能网联车协同合并控制研究[J]. 计算机应用研究, 2023, 40(9):2755-2759.
|
[3] |
陈志军, 张晶明, 熊盛光, 等. 智能网联车辆生态驾驶研究现状及展望[J]. 交通信息与安全, 2022, 40(4):13-25.
|
[4] |
吴官朴, 杨昱, 赵阳, 等. 生态驾驶在智能网联汽车中的应用综述[J]. 汽车文摘, 2020(7):9-16.
|
[5] |
蒋阳升, 蒋浩然, 姚志洪, 等. 基于虚拟车队的自动交叉路口车辆时序优化模型[J]. 中国公路学报, 2022, 35(8):291-303.
|
[6] |
|
[7] |
马庆禄, 张梓轩, 黄筱潇, 等. 智能网联环境下无信号交叉口交通自组织方法[J]. 公路, 2023, 68(2):168-177.
|
[8] |
|
[9] |
|
[10] |
吴伟, 刘洋, 刘威, 等. 自动驾驶环境下交叉口车辆路径规划与最优控制模型[J]. 自动化学报, 2020, 46(9):1971-1985.
|
[11] |
王莹然. 无信号交叉口自动驾驶车辆通行方法研究[D]. 兰州: 兰州交通大学, 2023.
|
[12] |
陈壮壮, 罗莉华. 网联自动驾驶车辆通过信号交叉口的速度轨迹优化[J]. 交通信息与安全, 2021, 39(4):92-98,156.
|
[13] |
张名芳, 李慢, 陈子凡, 等. 人机混驾环境下无信号交叉口自动驾驶汽车左转运动规划研究[J]. 中国公路学报, 2021, 34(7):67-78.
|
[14] |
柳祖鹏, 舒玉娇, 何雅琴. 智能网联环境下无信控交叉口冲突避碰模型研究[J/OL]. 武汉理工大学学报(交通科学与工程版). (2024-04-10)[2025-03-10]. http://kns.cnki.net/kcms/detail/42.1824.U.20240409.1418.086.html.
|
[15] |
张游, 潘福全, 张丽霞, 等. 车路协同环境下智能交叉口车速控制[J]. 控制理论与应用, 2022, 39(6):1057-1064.
|
[16] |
缑新科, 杨宏斌. 最优模糊控制在悬臂梁振动控制系统中的研究[J]. 电气自动化, 2012, 34(1):11-13.
|
[17] |
柳祖鹏, 黄镓法, 王道斌. 基于合作博弈的合流区加速路段智能网联汽车协同控制[J]. 交通运输研究, 2023, 9(6):34-43.
|
[18] |
景首才. 智能车路网联的合流区车辆协同控制方法研究[D]. 西安: 长安大学, 2020.
|
[19] |
|
[20] |
李林, 徐建闽, 叶凡. 基于道路平面线形的加速度干扰模型研究[J]. 中外公路, 2010, 30(2):18-21.
|
/
〈 |
|
〉 |