面向2060年的我国交通运输绿色转型战略与路径
Strategy and Path of Green Transformation for China′s Transportation Towards 2060
为加快推动我国交通运输绿色低碳转型,助力“双碳”目标如期实现和美丽中国建设,构建交通运输碳排放预测模型,设置面向2035年和2060年的基准情景、“双碳”政策情景及深度减排情景,分析不同情景下交通运输碳排放变化趋势,并提出交通运输绿色低碳转型的战略与路径。研究结果表明:①随着经济社会的快速发展和工业化城镇化进程的加快,我国交通运输碳排放总量在“十五五”期间仍将保持增长趋势,须建立由能耗双控向碳排放双控全面转型新机制,健全交通运输碳排放双控工作机制;②在“双碳”政策情景下,新能源应用减排效果最为突出,要以“零排放”为愿景优化载运工具能源结构,推动交通运输与能源融合发展,打造零碳交通基础设施;③在深度减排情景下,运输结构调整在2030年前后的减排贡献占比约为22%,要加快建设绿色高效的货运体系,健全绿色出行体系;④要建设气候适应型基础设施体系,打造韧性交通设施网,保障交通运输绿色低碳转型。
To accelerate the green and low-carbon transformation of transportation in China and assist in achieving the carbon peaking and carbon neutrality goals on schedule and building a beautiful China, a transportation carbon emission prediction model was constructed, and benchmark scenarios, carbon peaking and carbon neutrality policy scenarios, and deep emission reduction scenarios towards 2035 and 2060 were set. The changing trends of transportation carbon emissions under different scenarios were analyzed, and strategic paths for the green and low-carbon transformation of transportation were proposed. The research results show that: ① with the rapid development of economy and society and the acceleration of industrialization and urbanization, the total carbon emissions from transportation in China will continue to grow during the 15th Five-Year Plan period. It is necessary to establish a new mechanism for comprehensive transformation from dual control of energy consumption to dual control of carbon emissions, and improve the working mechanism for dual control of carbon emissions from transportation. ②Under the carbon peaking and carbon neutrality policy scenarios, the application of new energy has the most prominent emission reduction effect. It is necessary to optimize the energy structure of transportation vehicles with the vision of zero emissions, promote the integrated development of transportation and energy, and build zero-carbon transportation infrastructure. ③Under the deep emission reduction scenarios, the contribution of transportation structure adjustment to emission reduction around 2030 accounts for about 22%. It is necessary to accelerate the construction of a green and efficient freight system and improve the green travel system. ④It is necessary to build a climate-adaptive infrastructure system, create a resilient transportation facility network, and ensure the green and low-carbon transformation of transportation.
new era / green transportation / peaking carbon emissions / scenario analysis / carbon emissions
| [1] |
IEA. 2024 Outlook: The future of the energy & utilities industry[Z]. Paris: IEA, 2024.
|
| [2] |
田佩宁, 毛保华, 童瑞咏, 等. 我国交通运输行业及不同运输方式的碳排放水平和强度分析[J]. 气候变化研究进展, 2023, 19(3):347-356.
|
| [3] |
|
| [4] |
杨姗姗, 郭豪, 杨秀, 等. 双碳目标下建立碳排放总量控制制度的思考与展望[J]. 气候变化研究进展, 2023, 19(2):191-202.
|
| [5] |
李丹阳, 陈文颖. 碳中和目标下全球交通能源转型路径[J]. 气候变化研究进展, 2023, 19(2):203-212.
|
| [6] |
陆化普. 交通强国建设的机遇与挑战[J]. 科技导报, 2020, 38(9):17-25.
|
| [7] |
刘淳森, 曲建升, 葛钰洁, 等. 基于 LSTM 模型的中国交通运输业碳排放预测[J]. 中国环境科学, 2023, 43(5):2574-2582.
|
| [8] |
宁春晓, 郭秀锐, 龚晓倩, 等. 京津冀交通部门的碳排放及减排潜力预测研究[J]. 环境科学与技术, 2023, 46(9):138-147.
|
| [9] |
谭志海, 袁煜博, 王雪梅, 等. 基于 LEAP 模型的西安市交通污染物排放预测分析[J]. 西安工程大学学报, 2024, 38(3):75-82.
|
| [10] |
黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2):385-393.
|
| [11] |
黄爱玲, 马瑞晨, 王佳美, 等. “双碳” 目标下中国省域绿色物流发展时空演变分析[J]. 科技导报, 2023, 41(22):47-57.
|
| [12] |
车连发, 方健, 牛亚斌, 等. 渤海区域营运船舶碳排放强度指标核算与评级[J]. 科学技术与工程, 2024, 24(14):6108-6116.
|
| [13] |
王波, 王涵韬, 费炟. 中国交通碳排放与经济发展脱钩研究[J]. 科技导报, 2023, 41(22):38-46.
|
| [14] |
王震坡, 詹炜鹏, 孙逢春, 等. 新能源汽车碳减排潜力分析[J]. 北京理工大学学报, 2024, 44(2):111-122.
|
| [15] |
张子昂, 尹传忠, 陶学宗. 低碳导向的铁路驮背运输方案[J]. 上海海事大学学报, 2023, 44(2):62-67.
|
| [16] |
李晓易, 谭晓雨, 吴睿, 等. 交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6):15-21.
|
| [17] |
|
| [18] |
朱鸿伟, 田丽君, 江晓岚. 多模式出行场景下差异化激励绿色出行策略研究[J]. 中国管理科学, 2024, 32(9):131-141.
|
| [19] |
李小鹏. 深入学习贯彻习近平生态文明思想全面推进交通运输领域美丽中国建设[J]. 环境与可持续发展, 2024, 49(2):13-17.
|
/
| 〈 |
|
〉 |