低收缩免蒸养UHPC桥面铺装材料性能及构造设计

顾松, 魏道新, 马磊, 杨碧宇, 郭为强

交通运输研究 ›› 2024, Vol. 10 ›› Issue (2) : 97-109.

交通运输研究 ›› 2024, Vol. 10 ›› Issue (2) : 97-109. DOI: 10.16503/j.cnki.2095-9931.2024.02.011
技术前沿

低收缩免蒸养UHPC桥面铺装材料性能及构造设计

作者信息 +

Material Performance and Structural Design of Low-Shrinkage and Non-Steam-Cured UHPC Overlay for Bridge Deck Pavement

  • GU Song 1 ,  
  • WEI Daoxin 2 ,  
  • MA Lei 3, * ,  
  • YANG Biyu 1 ,  
  • GUO Weiqiang 3
Author information +
文章历史 +

摘要

为减少超高性能混凝土(UHPC)的收缩变形并降低养护成本,以多孔烧结铝矾石(CB)骨料作为内养护剂,研发了一种低收缩免蒸养的UHPC。通过室内试验,对自研UHPC的力学和变形性能进行了测试与评估。通过有限元数值模拟,分析了UHPC桥面铺装层的早期温湿度应力演化规律。结果表明,自研UHPC在免蒸养条件下仍然具有超高强度,28 d抗压强度达154 MPa,28 d劈裂抗拉强度达19.3 MPa;含CB骨料UHPC的28 d自收缩变形仅为160 μm/m,可有效降低UHPC铺装层发生翘曲、与下层混凝土发生脱粘的风险;UHPC的耐磨耗和抗冲击性能远优于普通混凝土,可延长桥面铺装层的使用寿命。数值计算结果表明,UHPC铺装层的最大拉应力受铺装层厚度和长度影响不大,因此不需要切缝。为增强UHPC铺装层与基层之间的黏结性能,基层混凝土表面应做粗糙化处理(露石表面),基层与UHPC铺装层之间按设计进行植筋。通过上述研究,验证了采用自研UHPC作为混凝土桥面铺装层的可行性。

Abstract

To reduce the shrinkage deformation and curing costs of UHPC (Ultra-High Performance Concrete), a low-shrinkage, non-steam-cured UHPC was developed using porous CB (Calcined Bauxite ) aggregate as an internal curing material. Mechanical and deformation properties of the UHPC were tested and evaluated through laboratory experiments. Finite element numerical simulations were employed to analyze the early temperature and humidity stress evolution in the UHPC overlay of a bridge deck pavement. The results indicate that the developed UHPC maintains its ultra-high strength under non-steam curing conditions, with a compressive strength of 154 MPa and a splitting tensile strength of 19.3 MPa at 28 d. The shrinkage deformation of UHPC containing CB aggregate is only 160 μm/m at 28 d, effectively reducing the risk of warping and delamination between the UHPC pavement layer and the underlying concrete. Moreover, UHPC exhibits superior abrasion resistance and impact resistance compared to ordinary concrete, thereby extending the service life of the bridge deck pavement. Numerical calculation results show that the maximum tensile stress in the UHPC overlay is minimally influenced by the thickness and length of the pavement layer, eliminating the need for the installation of expansion joints. To enhance the bond performance between the UHPC overlay and the base course, the surface of the concrete base course should be roughened (exposing aggregate), and reinforing bars should be installed between the base course and the UHPC overlay according to the design. This study validates the feasibility of using self-developed UHPC as a concrete bridge deck overlay.

关键词

超高性能混凝土 / 桥面铺装 / 低收缩 / 免蒸养 / 早龄期应力

Key words

UHPC (Ultra-High Performance Concrete) / bridge deck pavement / low shrinkage / non-steam curing / early age stress

引用本文

导出引用
顾松, 魏道新, 马磊, . 低收缩免蒸养UHPC桥面铺装材料性能及构造设计[J]. 交通运输研究. 2024, 10(2): 97-109 https://doi.org/10.16503/j.cnki.2095-9931.2024.02.011
GU Song, WEI Daoxin, MA Lei, et al. Material Performance and Structural Design of Low-Shrinkage and Non-Steam-Cured UHPC Overlay for Bridge Deck Pavement[J]. Transport Research. 2024, 10(2): 97-109 https://doi.org/10.16503/j.cnki.2095-9931.2024.02.011
中图分类号: U414   

参考文献

[1]
王志金, 张义, 谢恩慧. 粗骨料UHPC匀质性控制及在大跨度桥梁中的应用研究[J]. 混凝土, 2023(2):186-192.
[2]
刘长溪, 杜爽, 高中辉, 等. 水胶比对UHPC强度发展及微观结构演变规律的影响研究[J]. 混凝土, 2023(7):39-43.
[3]
LI J, WU Z, SHI C, et al. Durability of ultra-high performance concrete-A review[J]. Construction and Building Materials, 2020, 255: 119296.
[4]
赵筠, 廉慧珍, 金建昌. 钢-混凝土复合的新模式——超高性能混凝土(UHPC/UHPFRC)之一:钢-混凝土复合模式的现状、问题及对策与UHPC发展历程[J]. 混凝土世界, 2013, 52(10):56-69.
[5]
HABER Z B, MUNOZ J F, IGOR D L V, et al. Bond characterization of UHPC overlays for concrete bridge decks: Laboratory and field testing[J]. Construction and Building Materials, 2018, 190(30): 1056-1068.
[6]
鲁亚, 朱杰, 王江帆, 等. 含粗骨料 UHPC 在路面修复工程中的应用研究[J]. 交通科技, 2018(1):5-7.
[7]
GUO W, WEI Y, MA L. Shrinkage-induced warping of UHPC overlay cast on hardened NSC substrate under various conditions[J]. Cement and Concrete Composites, 2022, 134: 104772.
[8]
LIU Y, WEI Y, MA L, et al. Restrained shrinkage behavior of internally-cured UHPC using calcined bauxite aggregate in the ring test and UHPC-concrete composite slab[J]. Cement and Concrete Composites, 2022, 134: 104805.
[9]
DU J, MENG W, KHAYAT K H, et al. New development of ultra-high-performance concrete (UHPC)[J]. Composites Part B: Engineering, 2021, 224: 109220.
[10]
JUSTS J, WYRZYKOWSKI M, BAJARE D, et al. Internal curing by superabsorbent polymers in ultra-high performance concrete[J]. Cement and Concrete Research, 2015, 76: 82-90.
[11]
DONG E, CHEN Z, WU C, et al. New insights into determining the "time zero" of autogenous shrinkage in low water/binder cement-based composites (LW/B-CC) system based on relaxation theory[J]. Journal of Building Engineering, 2023, 66: 105852.
[12]
SUN Y, YU R, SHUI Z, et al. Understanding the porous aggregates carrier effect on reducing autogenous shrinkage of Ultra-High Performance Concrete (UHPC) based on response surface method[J]. Construction and Building Materials, 2019, 222: 130-141.
[13]
LIU K, YU R, SHUI Z, et al. Optimization of autogenous shrinkage and microstructure for Ultra-High Performance Concrete (UHPC) based on appropriate application of porous pumice[J]. Construction and Building Materials, 2019, 214: 369-381.
[14]
MENG W, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research, 2017, 101: 46-54.
[15]
LIU Y, WEI Y. Internal curing efficiency and key properties of UHPC influenced by dry or prewetted calcined bauxite aggregate with different particle size[J]. Construction and Building Materials, 2021, 312: 125406.
[16]
ISKANDER R, STEVENS A. The effectiveness of the application of high friction surfacing on crash reduction[C]// Christchurch, New Zealand: International Surface Friction Conference, 2005: 1-18.
[17]
WILSON B, MUKHOPADHYAY A. Alternative aggregates and materials for high friction surface treatments[R]. College Station Texas: Texas A&M Transportation Institute, 2016.
[18]
WOODWARD D, FRIEL S. Predicting the wear of high friction surfacing aggregate[J]. Coatings, 2017, 7(5): 71.
[19]
GUO W, HUANG X, ZHAO L, et al. Transverse cracking of concrete base plate in CRTS III ballastless track structure: effects of environmental boundary conditions[J]. Applied Sciences, 2021, 11(21): 10400.
[20]
CUSSON D, HOOGEVEEN T. Internal Curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking[J]. Cement and Concrete Research, 2008, 38(6): 757-765.
[21]
全国水泥标准化技术委员会. 水泥胶砂流动度测定方法:GB/T 2419-2005[S]. 北京: 中国标准出版社, 2005.
[22]
中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准:GB/T 50080-2016[S]. 北京: 中国建筑工业出版社, 2016.
[23]
中华人民共和国住房和城乡建设部. 活性粉末混凝土:GB/T 31387-2015[S]. 北京: 中国标准出版社, 2015.
[24]
全国水泥标准化技术委员会. 水泥胶砂强度检验方法:GB/T 17671-2021[S]. 北京: 中国标准出版社, 2021.
[25]
中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准:GB/T 50081-2019[S]. 北京: 中国建筑工业出版社, 2019.
[26]
WEI Y, HANSEN W, BIERNACKI J J, et al. Unified shrinkage model for concrete from autogenous shrinkage test on paste with and without ground-granulated blast-furnace slag[J]. ACI Materials Journal, 2011, 108(1): 13.
[27]
WEI Y, GUO W, ZHENG X. Integrated shrinkage, relative humidity, strength development, and cracking potential of internally cured concrete exposed to different drying conditions[J]. Drying Technology, 2016, 34(7): 741-752.
[28]
WEI Y, XIANG Y, ZHANG Q. Internal curing efficiency of prewetted LWFAs on concrete humidity and autogenous shrinkage development[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 947-95.
[29]
中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程:JTG 3420-2020[S]. 北京: 人民交通出版社股份有限公司, 2021.
[30]
LIU Y, WEI Y. Drop-weight impact resistance of ultrahigh-performance concrete and the corresponding statistical analysis[J]. Journal of Materials in Civil Engineering, 2022, 34(1): 04021409.
[31]
WEI Y, GUO W, LIANG S. Microprestress-solidification theory-based tensile creep modeling of early-age concrete: Considering temperature and relative humidity effects[J]. Construction and Building Materials, 2016, 127: 618-626.
[32]
BAŽANT Z P, CUSATIS G, CEDOLIN L. Temperature effect on concrete creep modeled by microprestress-solidification theory[J]. Journal of Engineering Mechanics, 2004, 130(6): 691-699.
[33]
WEI Y, LIANG S, GAO X. Numerical evaluation of moisture warping and stress in concrete pavement slabs with different water-to-cement ratio and thickness[J]. Journal of Engineering Mechanics, 2017, 143(2): 04016111.
[34]
VALIKHANI A, JAHROMI A J, MANTAWY I M, et al. Experimental evaluation of concrete-to-UHPC bond strength with correlation to surface roughness for repair application[J]. Construction and Building Materials, 2020, 238: 117753.
[35]
VALIKHANI A, JAHROMI A J, MANTAWY I M, et al. Effect of mechanical connectors on interface shear strength between concrete substrates and UHPC: Experimental and numerical studies and proposed design equation[J]. Construction and Building Materials, 2021, 267: 120587.

基金

云南省交通运输厅项目(云交科教便〔2021〕25号)

Accesses

Citation

Detail

段落导航
相关文章

/