
浮置板轨道沿线砖混建筑物振动响应及楼内振动传播规律
Vibration Response and Internal Vibration Propagation Law of Brick-Concrete Buildings Along Floating Plate Track Line
为探究浮置板轨道沿线砖混结构建筑物振动水平和振动传播衰减规律,弥补现有减隔振措施在设计及选用方面存在的不足,建立地铁浮置板轨道沿线建筑物振动仿真预测模型,对浮置板轨道线路沿线建筑物的楼内振动响应进行计算分析。以某运营地铁浮置板轨道线路为例,建立了地铁列车-浮置板轨道频域耦合解析模型及道床-隧道-地层-建筑物有限元仿真模型,利用实测数据对模型进行校核,分析建筑物各层分频振动特性。研究发现:浮置板轨道线路沿线建筑物内的振动响应同时受到浮置板轨道固有频率、建筑物自身固有模态频率以及轮轨共振频率的影响;楼内不同楼层、同一楼层不同房间的振动响应差异较大,分频振级最大差值可达15 dB以上。故在进行减隔振设计时,需根据保护对象所在建筑物内的具体楼层及位置进行减隔振措施的针对性设计,并提高减振轨道设计的频率匹配意识,避免减振轨道的粗放使用。
In order to explore the vibration level and vibration propagation attenuation law of brick-concrete buildings along the floating slab track, and to make up for the shortcomings in the design and selection of existing vibration reduction and isolation measures, this article established a simulation and prediction model for building vibration along the metro line considering floating slab track, and calculated the vibration response inside the buildings along the line. Taking an operational floating slab track as the background, a train-floating slab track coupled analytical model in the frequency domain and a finite element simulation model of tunnel-soil-building were established. The models were verified with in-site measured data, and the frequency division vibration characteristics of each floor of a building were analyzed. The results show that: the vibration response inside the buildings along the floating slab track line is simultaneously affected by the natural frequency of the floating slab track, the inherent modal frequency of the building, and the wheel-rail resonance frequency; the vibration response of different floors and rooms on the same floor in the building varies greatly, with the maximum difference in frequency division vibration levels reaching over 15 dB. Therefore, targeted design of vibration reduction and isolation measures should be carried out based on the specific floor and position of the building where the protected object is located when the vibration reduction and isolation design is needed, and the frequency matching awareness of vibration reduction track design should be improved to avoid the extensive use of vibration reduction tracks.
地铁 / 钢弹簧浮置板轨道 / 振动预测 / 室内振动 / 减振效果
metro / floating slab track / vibration prediction / indoor vibration / vibration control effect
[1] |
交通运输部. 2022年城市轨道交通运营数据速报[EB/OL]. (2023-01-10)[2023-06-05]. https://mp.weixin.qq.com/s?__biz=MzI3MDQwMDQ5NQ==&mid=2247579515&idx=1&sn=879bfb737ad4863e9efd2bf14995a118&scene=0.
|
[2] |
刘维宁, 马蒙, 刘卫丰, 等. 我国城市轨道交通环境振动影响的研究现况[J]. 中国科学:技术科学, 2016, 46(6): 547-559.
|
[3] |
曹庆锋, 常文军. 日本轨道交通发展历程及经验启示[J]. 交通运输研究, 2019, 5(3):10-17.
|
[4] |
王昊. 交通振动对石窟类古建筑的影响及对策[J]. 交通标准化, 2011(10):168-170.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
宋波, 王希慧, 李杨, 等. 地铁振动对邻近砖混结构住宅影响研究[J]. 土木工程学报, 2018(S2):48-53.
|
[10] |
|
[11] |
|
[12] |
马龙祥. 基于无限-周期结构理论的车轨耦合及隧道-地层振动响应分析模型研究[D]. 北京: 北京交通大学, 2014.
|
[13] |
|
[14] |
翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.
|
[15] |
谭新宇, 刘卫丰. 三维离散支承浮置板轨道动力响应频域模型研究[J]. 振动与冲击, 2021, 40(18):183-189.
|
[16] |
杜林林. 地铁列车曲线运行车轨耦合解析模型及振源特性研究[D]. 北京: 北京交通大学, 2018.
|
/
〈 |
|
〉 |