碳普惠机制下网约车用户拼车出行意愿研究

张逸文, 李文翔, 刘向龙, 陈思薇, 杨子杰

交通运输研究 ›› 2023, Vol. 9 ›› Issue (5) : 83-96.

PDF(3142 KB)
PDF(3142 KB)
交通运输研究 ›› 2023, Vol. 9 ›› Issue (5) : 83-96. DOI: 10.16503/j.cnki.2095-9931.2023.05.008
绿色

碳普惠机制下网约车用户拼车出行意愿研究

作者信息 +

Ridesplitting Intentions of Online Ride-Hailing Users under Carbon Inclusion Scheme

Author information +
文章历史 +

摘要

为鼓励网约车用户选择更加低碳的拼车出行方式,引入碳普惠机制,分析用户在不同低碳激励作用下对于网约拼车出行的行为意愿。首先,基于计划行为理论、技术接受模型和感知风险理论,提出关于网约车用户拼车出行意愿影响因素的假设;然后,正交构建了12种涉及不同碳积分价值和拼车里程的碳普惠情景,并采用SP(Stated Preference)调查收集了网约车用户的社会人口信息、心理潜变量以及在不同假设情景下的拼车出行意愿;最后,基于结构方程模型对网约车用户在碳普惠机制下的拼车出行意愿进行建模分析。研究发现:碳积分价值、拼车里程、态度、主观规范和低碳价值观对拼车出行意愿有显著直接影响;感知有用性、感知风险对拼车出行意愿有显著间接影响;随着碳积分价值的提高,用户的拼车出行意愿增强,且态度及主观规范的作用减弱,而低碳价值观的作用增强。研究结果证明了碳普惠机制可有效促进网约车用户选择拼车出行。

Abstract

To encourage online ride-hailing users to choose the ridesplitting services that are more low-carbon, a carbon inclusion scheme was introduced for analysis of ridesplitting behavioral intention of online ride-hailing users under different low-carbon incentives. Firstly, hypotheses of the influencing factors on online ride-hailing users′ willingness to ridesplitting were proposed based on the theory of planned behavior, technology acceptance model, and perceived risk theory. Then, 12 scenarios of the carbon inclusion scheme with different carbon credit price and ridesplitting distance were constructed orthogonally. Meanwhile, a survey using stated preference (SP) methodology was conducted to collect the socio-demographic information, psychological latent variables, and ridesplitting intentions of online ride-hailing users under different hypothetical scenarios. Finally, a structural equation model was employed to model the ridesplitting intentions of online ride-hailing users under the carbon inclusion scheme. The results show that carbon credit price, travel distance, attitude, subjective norms and low-carbon values have significant direct effects on ridesplitting intention while perceived usefulness and perceived risk have significant indirect effects on ridesplitting intention. Specifically, as the carbon credit price increases, users′ willingness to ridesplitting increases, and the effect of attitudes and subjective norms weakens, while the effect of low-carbon values strengthens. The research findings prove that the carbon inclusion scheme could effectively promote online ride-hailing users to choose ridesplitting.

关键词

碳普惠 / 网约车 / 拼车 / 行为意愿 / 计划行为理论 / 结构方程模型

Key words

carbon inclusion scheme / online ride-hailing / ridesplitting / behavioral intention / theory of planned behavior / structural equation model

引用本文

导出引用
张逸文, 李文翔, 刘向龙, . 碳普惠机制下网约车用户拼车出行意愿研究[J]. 交通运输研究. 2023, 9(5): 83-96 https://doi.org/10.16503/j.cnki.2095-9931.2023.05.008
ZHANG Yiwen, LI Wenxiang, LIU Xianglong, et al. Ridesplitting Intentions of Online Ride-Hailing Users under Carbon Inclusion Scheme[J]. Transport Research. 2023, 9(5): 83-96 https://doi.org/10.16503/j.cnki.2095-9931.2023.05.008
中图分类号: U491.1   

参考文献

[1]
钟毅平, 游畅, 孙宇, 等. 绿色生活方式的结构与测量[J]. 心理学探新, 2021, 41(4):349-355.
[2]
陈坚, 张弛, 庹永恒, 等. 考虑环保意识和出行习惯的公交出行选择行为模型[J]. 交通运输系统工程与信息, 2020, 20(4):128-135.
[3]
叶章毅. 组团式布局下城市公共交通发展模式探讨[J]. 交通与运输, 2023, 39(4):95-99.
[4]
潘晓滨, 都博洋. 我国碳普惠制度立法及实践现状探究[J]. 资源节约与环保, 2021(4):138-139.
[5]
AKIMOTO K, SANO F, ODA J. Impacts of ride and car-sharing associated with fully autonomous cars on global energy consumptions and carbon dioxide emissions[J]. Technological Forecasting and Social Change, 2022, 174: 121311.
[6]
YU B, MA Y, XUE M, et al. Environmental benefits from ridesharing: A case of Beijing[J]. Applied Energy, 2017, 191:141-152.
[7]
LI W X, PU Z Y, LI Y Y, et al. How does ridesplitting reduce emissions from ridesourcing? A spatiotemporal analysis in Chengdu, China[J]. Transportation Research Part D: Transport and Environment, 2021, 95: 102885.
[8]
AGATZ N A H, ERERA A L, SAVELSBERGH M W P, et al. Dynamic ride-sharing: A simulation study in metro Atlanta[J]. Transportation Research Part B: Methodological, 2011, 45(9): 1450-1464.
[9]
LI W X, PU Z Y, LI Y Y, et al. Characterization of ridesplitting based on observed data: A case study of Chengdu, China[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 330-353.
[10]
SORIA J, STATHOPOULOS A. Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities[J]. Journal of Transport Geography, 2021, 95: 103148.
[11]
张雨彤, 汪佳禾, 王锦诚, 等. 基于结构方程模型的拼车出行意愿研究[J]. 中国集体经济, 2023(13):70-73.
[12]
SI H, DUAN X, CHENG L, et al. Determinants of consumers′ continuance intention to use dynamic ride-sharing services[J]. Transportation Research Part D: Transport and Environment, 2022, 104: 103201. 1-103201.18.
[13]
WANG Y, WANG S, WANG J, et al. An empirical study of consumers′ intention to use ride-sharing services: Using an extended technology acceptance model[J]. Transportation, 2020, 47(1): 397-415.
[14]
Al M H R, Al O G A. Modeling determinants of carpooling intentions in Jordan[J]. Transportation Research Record, 2023, 2677(3): 797-819.
[15]
LI X, FENG F, WANG W, et al. Structure analysis of factors influencing the preference of ridesplitting[J]. Journal of Advanced Transportation, 2021, 2021: 8820701. 1-8820701.8.
[16]
WANG Z, CHEN X, CHEN X M. Ridesplitting is shaping young people′s travel behavior: Evidence from comparative survey via ride-sourcing platform[J]. Transportation Research Part D: Transport and Environment, 2019, 75: 57-71.
[17]
马文婷. 在线拼车出行方式下出行者选择行为研究[D]. 大连: 大连理工大学, 2020.
[18]
于晓娟, 邹正兴, 张千帆. 基于后悔理论的拼车决策问题研究[J]. 运筹与管理, 2022, 31(2):1-7.
[19]
韩印, 李媛媛, 李文翔, 等. 基于轨迹数据的网约车排放时空特征分析[J]. 交通运输系统工程与信息, 2022, 22(1):234-242.
[20]
CHEN X M, ZAHIRI M, ZHANG S. Understanding ridesplitting behavior of on-demand ride services: An ensemble learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 76: 51-70.
[21]
DONG Y, WANG S, LI L, et al. An empirical study on travel patterns of internet based ride-sharing[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 1-22.
[22]
李兴华, 冯飞宇, 成诚, 等. 网约拼车服务选择偏好分析及建模[J]. 吉林大学学报(工学版), 2022, 52(3):578-584.
[23]
代丽梅, 谭欣悦, 汪晖, 等. 林业碳普惠发展现状及建议[J]. 四川林业科技, 2022, 43(2):132-137.
[24]
刘航. 碳普惠制:理论分析、经验借鉴与框架设计[J]. 中国特色社会主义研究, 2018(5):86-94,112.
[25]
WANG Y, WANG F, WANG Z. How carbon allowance allocation rule affects manufacturing/remanufacturing decisions under the carbon credits buy-back policy[J]. Energy Reports, 2022, 8:14061-14071.
[26]
朱小莲. 厦门地铁碳积分体系试点建设[J]. 现代城市轨道交通, 2022(8):52-55.
[27]
李文翔, 李媛媛, 刘好德, 等. 基于机器学习的网约车合乘出行碳减排状态预测[J]. 交通运输系统工程与信息, 2023, 23(1):254-264.
[28]
AJZEN I. The theory of planned behavior[J]. Organizational Behavior and Human Decision Processes, 1991, 50(2): 179-211.
[29]
方晓平, 周倩然. 基于TPB的低碳交通出行方式研究[J]. 铁道科学与工程学报, 2019, 16(3):804-811.
[30]
马壮林, 崔姗姗, 胡大伟. 基于MIMIC模型的限行政策下城市居民低碳出行意向研究[J]. 吉林大学学报(工学版), 2022, 52(11):1-10.
[31]
DAVIS F D, VENKATESH V. A critical assessment of potential measurement biases in the technology acceptance model: Three experiments[J]. International Journal of Human-Computer Studies, 1996, 45(1): 19-45.
[32]
LIM N. Consumers′ perceived risk: Sources versus consequences[J]. Electronic Commerce Research and Applications, 2003, 2(3): 216-228.
[33]
黄雪丽, 路正南, 王健. 居民低碳生活行为研究综述[J]. 科技管理研究, 2011, 31(18):231-235.
[34]
胡晓玲, 崔莹. 碳普惠机制发展现状及完善建议[J]. 可持续发展经济导刊, 2023(4):23-27.
[35]
LANE K J, LEVY J I, PATTON A P, et al. Relationship between traffic-related air pollution and inflammation biomarkers using structural equation modeling[J]. Science of the Total Environment, 2023, 870: 161874.
[36]
牟振华, 于浩, 梁维维, 等. 基于SEM的共享单车使用决策研究[J]. 交通运输研究, 2019, 5(4):121-126.
[37]
WANG L, LI W X, WENG J X, et al. Do low-carbon rewards incentivize people to ridesplitting? Evidence from structural analysis[J]. Transportation, 2023, 50: 2077-2109.
[38]
HAIR J F, RINGLE C M, SARSTEDT M. PLS-SEM: Indeed a Silver Bullet[J]. Journal of Marketing Theory and Practice, 2011, 19(2): 139-152.

基金

国家自然科学基金项目(52002244)
国家自然科学基金项目(71774118)
上海市哲学社会科学规划青年课题(2023ECK003)
上海市晨光计划项目(20CG55)
上海市科技创新行动计划项目(22dz1207500)

PDF(3142 KB)

Accesses

Citation

Detail

段落导航
相关文章

/