
低碳政策下考虑行程时间不确定性的机场地面通达方式选择
Choice of Airport Ground Access Mode Considering Travel Time Uncertainty under Low-Carbon Policies
在航空客运量快速增长的背景下,为了更有效地引导出行者选择低碳环保的机场地面通达方式,以西安咸阳国际机场为例,研究了低碳消费券补贴和居民环保意识对机场地面通达方式选择偏好的影响,并探讨了行程时间不确定性对于居民是否选择绿色出行方式的影响。考虑到交通环境的复杂性,设计了一个考虑行程时间不确定性的陈述性选择偏好实验来调查前往机场的出行者。基于收集的数据,通过构建混合累积前景理论-多项Logit(Cumulative Prospect Theory-Multinomial Logit, CPT-MNL)模型,研究了不同场景下出行者的选择偏好。模型标定结果表明,一方面,行李数量、行程时间不确定性、出行费用、提前到达机场的时间偏好是机场地面通达方式选择的重要影响因素;另一方面,碳减排比例和消费券补贴均对低碳出行方式产生显著影响。由此可以看出,在当前推广绿色出行的背景下,出行者对碳减排的重视程度逐渐增强,在出行时会有意识地选择低碳出行方式。低碳消费券补贴能够进一步促进出行者放弃私人交通方式转而选择公共交通。因此,交通管理者在倡导使用公共交通时,可以考虑强调环保概念、提供政策补贴等措施。针对行程时间延误对出行方式选择的显著影响,着力于提高公共交通运行的可靠性可以缩短行程时间延误差值,更有助于调整交通结构偏向低碳的公共交通。通过不断强化低碳出行理念,营造低碳社会氛围,提高公共交通出行便利度和可靠性,关注居民低碳出行选择特征并实施低碳激励策略,能够更好地引导出行者更多地使用绿色出行方式。
In the context of rapid growth in air passenger volume, in order to more effectively guide travelers to choose low-carbon and environment-friendly airport ground access modes, taking Xi′an Xianyang International Airport as an example, this study investigated the effects of low-carbon consumption voucher subsidies and residents′ environmental awareness on airport ground access method selection preferences, and explored the role of travel time uncertainty in guiding residents towards choosing sustainable mobility modes. Considering the complexity of traffic environments, a declarative choice preference experiment was designed to investigate travelers heading to the airport, taking into account the uncertainty of travel time. Based on the collected data, this study developed a hybrid Cumulative Prospect Theory-Multinomial Logit (CPT-MNL) model to analyze travelers′ preferences under different scenarios. The estimated results reveal that, on the one hand, factors such as the number of carry-on luggage, travel time uncertainty, travel costs, and preferences for arriving early at the airport significantly influence the choice of airport ground access modes. On the other hand, the proportion of carbon emissions reduction and consumption voucher subsidies have significant impact on sustainable mobility modes. This underscores that amid the current context of promoting green travel, travelers are increasingly valuing carbon emissions reduction and consciously opting for sustainable mobility modes. The low-carbon consumption voucher could further encourage travelers to shift from private transport to public transport. Thus, transportation managers, when advocating for public transit use, can emphasize environmental considerations and offer policy incentives. Given the significant impact of travel time uncertainty on mode choice, results show that enhancing the reliability of public transport operations to reduce travel time delays can further facilitate the shift towards low-carbon public transit, contributing to traffic structure adjustments. Therefore, it is essential to continually reinforce low-carbon travel concepts, cultivate a low-carbon societal atmosphere, enhance the convenience and reliability of public transport, focus on the characteristics of travelers′ low-carbon travel choices, and implement low-carbon incentive strategies for encouraging the use of sustainable mobility modes.
机场地面通达方式 / CPT-MNL模型 / 陈述性选择偏好调查 / 低碳消费券 / 碳减排
airport ground access mode / CPT-MNL model / declarative choice preference survey / low-carbon consumption voucher / carbon emission reduction
[1] |
|
[2] |
和占琼, 何民. 环境态度对交通行为影响研究综述[J]. 城市问题, 2015(1):97-101.
|
[3] |
国家发展改革委, 工业和信息化部, 住房和城乡建设部, 等. 国家发展改革委等部门关于印发《促进绿色消费实施方案》的通知[EB/OL].(2022-01-18)[2023-05-20]. https://www.gov.cn/zhengce/zhengceku/2022-01/21/content_5669785.htm.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
胡严艺, 蒲政, 王沛. 基于 Logit 模型的碳排放收费对居民出行方式选择的研究[J]. 交通运输工程与信息学报, 2018, 16(4):57-62.
|
[9] |
|
[10] |
景鹏, 王静, 陈龙, 等. 考虑主观态度的低碳出行市场细分实证研究[J]. 预测, 2016, 35(6):37-43.
|
[11] |
|
[12] |
秦焕美, 囤莹莹, 陈艳艳. 大型机场小汽车短时停车行为研究[J]. 交通科技与经济, 2020, 22(5):11-16.
|
[13] |
李欣悦, 孙云华, 艾云飞. 多类信息对机场出站乘客交通方式选择的影响[J]. 交通运输系统工程与信息, 2021, 21(4):163-170.
|
[14] |
张杨. 不确定性对城市交通出行者路径选择的影响[J]. 交通运输工程学报, 2010, 10(5):77-80.
|
[15] |
王文颖. 出行时间不确定性及路网规模对出行者逐日路径选择行为的影响[D]. 呼和浩特: 内蒙古大学, 2020.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
/
〈 |
|
〉 |