交通大数据背景下的公交问题诊断与优化综述

刘骜, 钟绍鹏, 李茜瑶, 姜宇, 王仲

交通运输研究 ›› 2023, Vol. 9 ›› Issue (5) : 40-51.

PDF(2448 KB)
PDF(2448 KB)
交通运输研究 ›› 2023, Vol. 9 ›› Issue (5) : 40-51. DOI: 10.16503/j.cnki.2095-9931.2023.05.004
便捷·高效

交通大数据背景下的公交问题诊断与优化综述

作者信息 +

Review on Public Transportation Problem Diagnosis and Optimization in Context of Transportation Big Data

Author information +
文章历史 +

摘要

为深化对交通大数据背景下公交问题诊断与优化的理解,推动城市公共交通系统良性发展,围绕出行需求估计、出发时间与出行路径选择、出行时间估算及公交系统优化4类核心问题进行了综述研究。采用系统性文献综述法,对近年来的公交问题诊断与优化研究进行了全面回顾和分析,以总结既有研究的主要贡献和存在的缺陷,并探讨了未来研究的可能方向。文献梳理结果显示,以往研究存在过度关注居民个体出行行为刻画、忽视公共交通与其他出行方式的联系、未能充分考虑潜在客流需求、忽视公交线网设计与时刻表制定之间相互影响4个主要问题。从研究趋势来看,未来公交系统的分析与优化将更加关注多源数据融合和人工智能技术。这些技术将深化对公交乘客和小汽车用户出行规律的分析、解析小汽车用户向公交系统转移的作用机理,并推动公交系统协同优化模型的开发,以推进城市交通系统向更高效、环保和可持续的方向发展。

Abstract

To augment comprehension of problem diagnosis and optimization of public transportation systems in context of transportation big data, and promote healthy development of urban public transportation system, this study conducted a meticulous review and investigation focusing on four pivotal topics: travel demand estimation, departure time and travel route selection, travel time estimation and public transportation system optimization. Employing a systematic literature review methodology, this paper offered a comprehensive analysis of current research concerning the problem diagnosis and optimization of public transportation system. The objective is to summarize the principal contributions and limitations of previous research and to delineate prospective directions of future research. The results from the literature review reveal four major issues existing in previous research: an overemphasis on the individual behaviors of passengers, the neglect of the relationship between public transportation and alternative travel modes, the failure to fully consider potential passengers′ travel demand, and the disregard for the interplay between bus network design and timetable formulation. As for research trends, the analysis and optimization of public transportation systems will increasingly focus on integration of multi-source data and application of artificial intelligence technologies. These technologies will deepen the analysis of travel patterns of bus passengers and car users, elucidate the mechanism of car commuters transitioning to bus systems, and promote the development of collaborative optimization models for bus systems, in order to promote the development of urban transportation systems towards more efficient, environmentally friendly, and sustainable directions.

关键词

交通规划 / 公交问题诊断 / 线网优化 / 时刻表优化 / 交通大数据

Key words

transportation planning / public transportation problem diagnosis / network optimization / schedule optimization / transportation big data

引用本文

导出引用
刘骜, 钟绍鹏, 李茜瑶, . 交通大数据背景下的公交问题诊断与优化综述[J]. 交通运输研究. 2023, 9(5): 40-51 https://doi.org/10.16503/j.cnki.2095-9931.2023.05.004
LIU Ao, ZHONG Shaopeng, LI Xiyao, et al. Review on Public Transportation Problem Diagnosis and Optimization in Context of Transportation Big Data[J]. Transport Research. 2023, 9(5): 40-51 https://doi.org/10.16503/j.cnki.2095-9931.2023.05.004
中图分类号: U491.1   

参考文献

[1]
彭道月. 中小城市公交优先发展策略研究[J]. 公路交通科技, 2022, 39(7):172-180.
[2]
赵胜川. 从汽车化社会的功与过谈城市交通世界新潮流[J]. 交通运输研究, 2022, 8(4):2-35.
[3]
范冬庆. 绿色交通在中国:那些被忽视的逻辑[C]// 2016年第十一届城市发展与规划大会论文集. 长沙: 中国城市科学研究会, 2016:1-5.
[4]
EGU O, BONNEL P. How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon[J]. Transportation Research Part A: Policy and Practice, 2020, 138: 267-282.
[5]
MUNIZAGA M A, GSCHWENDER A, GALLEGOS N. Fare evasion correction for smartcard-based origin-destination matrices[J]. Transportation Research Part A: Policy and Practice, 2020, 141: 307-322.
[6]
REDMAN L, FRIMAN M, GÄRLING T, et al. Quality attributes of public transport that attract car users: A research review[J]. Transport Policy, 2013, 25: 119-127.
[7]
MAHMOUD M, HINE J. Measuring the influence of bus service quality on the perception of users[J]. Transportation Planning and Technology, 2016, 39(3): 284-299.
[8]
陆化普, 孙智源, 屈闻聪. 大数据及其在城市智能交通系统中的应用综述[J]. 交通运输系统工程与信息, 2015, 15(5):45-52.
[9]
KIM J, CORCORAN J, PAPAMANOLIS M. Route choice stickiness of public transport passengers: Measuring habitual bus ridership behaviour using smart card data[J]. Transportation Research Part C: Emerging Technologies, 2017, 83: 146-164.
[10]
TU W, CAO R, YUE Y, et al. Spatial variations in urban public ridership derived from GPS trajectories and smart card data[J]. Journal of Transport Geography, 2018, 69: 45-57.
[11]
WANG R, CHEN F, LIU X, et al. Spatiotemporal analysis of competition between subways and taxis based on multi-source data[J]. IEEE Access, 2020, 8: 225792-225804.
[12]
GUIHAIRE V, HAO J K. Transit network design and scheduling: A global review[J]. Transportation Research Part A: Policy and Practice, 2008, 42(10): 1251-1273.
[13]
CAI Z, WANG D, CHEN X M. A novel trip coverage index for transit accessibility assessment using mobile phone data[J]. Journal of Advanced Transportation, 2017: 9754508.
[14]
LI Z C, ZHANG L. The two-mode problem with bottleneck queuing and transit crowding: How should congestion be priced using tolls and fares?[J]. Transportation Research Part B: Methodological, 2020, 138: 46-76.
[15]
尚华艳, 王闪, 黄海军, 等. 基于活动的瓶颈模型: 公交枢纽晚高峰居民通勤研究[J]. 系统工程理论与实践, 2020, 40(3):679-690.
[16]
GORDON J B, KOUTSOPOULOS H N, WILSON N H M. Estimation of population origin-interchange-destination flows on multimodal transit networks[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 350-365.
[17]
QIU G, SONG R, HE S, et al. Clustering passenger trip data for the potential passenger investigation and line design of customized commuter bus[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(9): 3351-3360.
[18]
王子懿, 李健. 场景导向的定制公交出行需求宏微观数据嵌套分析[J]. 城市交通, 2022, 20(6):38-45.
[19]
吴子啸, 任西锋, 胡静宇. 基于公交GPS和IC卡数据的综合交通建模新思路[J]. 城市交通, 2011, 9(1):47-51.
[20]
龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012, 67(10):1339-1352.
[21]
MA X, WU Y J, WANG Y, et al. Mining smart card data for transit riders′ travel patterns[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 1-12.
[22]
LEI D, CHEN X, CHENG L, et al. Inferring temporal motifs for travel pattern analysis using large scale smart card data[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102810.
[23]
GUO R, GUAN W, HUANG A, et al. Exploring potential travel demand of customized bus using smartcard data[C]// 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Auckland: IEEE, 2019: 2645-2650.
[24]
陈君, 田朝军, 赵清梅, 等. 基于时空行为规律挖掘的公交乘客分类方法[J]. 交通运输工程学报, 2021, 21(5):274-285.
[25]
HAN G, SOHN K. Activity imputation for trip-chains elicited from smart-card data using a continuous hidden Markov model[J]. Transportation Research Part B: Methodological, 2016, 83: 121-135.
[26]
ZHAO Z, KOUTSOPOULOS H N, ZHAO J. Discovering latent activity patterns from transit smart card data: A spatiotemporal topic model[J]. Transportation Research Part C: Emerging Technologies, 2020, 116: 102627.
[27]
TAO S, ROHDE D, CORCORAN J. Examining the spatial-temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap[J]. Journal of Transport Geography, 2014, 41: 21-36.
[28]
QI G, CEDER A, HUANG A, et al. A methodology to attain public transit origin-destination mobility patterns using multi-layered mesoscopic analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(10): 6256 - 6274.
[29]
REN Y, CHEN G, HAN Y, et al. Extracting potential bus lines of customized city bus service based on public transport big data[C]// IOP Conference Series: Earth and Environmental Science. Beijing: IOP Publishing, 2016: 012017.
[30]
LI J, LV Y, MA J, et al. Methodology for extracting potential customized bus routes based on bus smart card data[J]. Energies, 2018, 11(9): 1-15.
[31]
MA D, FANG B, MA W, et al. Potential routes extraction for urban customized bus based on vehicle trajectory clustering[J/OL]. IEEE Transactions on Intelligent Transportation Systems. https://ieeexplore.ieee.org/abstract/document/10164198.
[32]
PTERNEA M, KEPAPTSOGLOU K, KARLAFTIS M G. Sustainable urban transit network design[J]. Transportation Research Part A: Policy and Practice, 2015, 77: 276-291.
[33]
YAO B, HU P, LU X, et al. Transit network design based on travel time reliability[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 233-248.
[34]
AN K, LO H K. Robust transit network design with stochastic demand considering development density[J]. Transportation Research Procedia, 2015, 7: 300-319.
[35]
BERTSIMAS D, NG Y S, YAN J. Data-driven transit network design at scale[J]. Operations Research: The Journal of the Operations Research Society of America, 2021, 69(4): 1118-1133.
[36]
田秀珠, 高悦尔, 王成, 等. 轨道共线段公交发车班次优化[J]. 公路交通科技, 2020, 37(1):115-121,130.
[37]
马昌喜, 王超, 郝威, 等. 突发公共卫生事件下应急定制公交线路优化[J]. 交通运输工程学报, 2020, 20(3):89-99.
[38]
王健, 曹阳, 王运豪. 考虑出行时间窗的定制公交线路车辆调度方法[J]. 中国公路学报, 2018, 31(5):143-150.
[39]
WANG Z, YU J, HAO W, et al. Joint optimization of running route and scheduling for the mixed demand responsive feeder transit with time-dependent travel times[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2498-2509.
[40]
SUN L, JIN J G, LEE D H, et al. Demand-driven timetable design for metro services[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 284-299.
[41]
WU W, LIU R, JIN W, et al. Stochastic bus schedule coordination considering demand assignment and rerouting of passengers[J]. Transportation Research Part B: Methodological, 2019, 121: 275-303.
[42]
WU J, LIU M, SUN H, et al. Equity-based timetable synchronization optimization in urban subway network[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 1-18.
[43]
XIONG J, HE Z, GUAN W, et al. Optimal timetable development for community shuttle network with metro stations[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 540-565.
[44]
CHEN X, WANG Y, MA X. Integrated optimization for commuting customized bus stop planning, routing design, and timetable development with passenger spatial-temporal accessibility[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2060-2075.
[45]
MA H, YANG M, LI X. Integrated optimization of customized bus routes and timetables with consideration of holding control[J]. Computers & Industrial Engineering, 2023, 175: 108886.
[46]
YANG L, DI Z, DESSOUKY M M, et al. Collaborative optimization of last-train timetables with accessibility: A space-time network design based approach[J]. Transportation Research Part C: Eme-rging Technologies, 2020, 114: 572-597.
[47]
PELLETIER M P, TRÉPANIER M, MORENCY C. Smart card data use in public transit: A literature review[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(4): 557-568.
[48]
陈君, 杨东援. 基于APTS数据的公交卡乘客通勤OD分布估计方法[J]. 交通运输系统工程与信息, 2013, 13(4):47-53.
[49]
CAO Y, WANG J. The key contributing factors of customized shuttle bus in rush hour: A case study in Harbin city[J]. Procedia Engineering, 2016, 137: 478-486.
[50]
LI J, LV Y, MA J, et al. Factor analysis of custo-mized bus attraction to commuters with different travel modes[J]. Sustainability, 2019, 11(24): 1-13.
[51]
周晶, 张伦珂. 利用IC卡数据估计公交OD矩阵的模型及算法[J]. 系统工程理论与实践, 2006, 26(4):130-135.
[52]
HUSSAIN E, BHASKAR A, CHUNG E. Transit OD matrix estimation using smartcard data: Recent developments and future research challenges[J]. Transportation Research Part C: Emerging Technologies, 2021, 125, 103044.
[53]
CUI A. Bus passenger origin-destination matrix estimation using automated data collection systems[D]. Boston: Massachusetts Institute of Technology, 2006.
[54]
BARRY J, NEWHOUSER R, RAHBEE A, et al. Origin and destination estimation in New York City with automated fare system data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1817( 1817): 183-187.
[55]
SZETO W Y, JIANG Y. Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach[J]. Transportation Research Part B: Methodological, 2014, 67: 235-263.
[56]
YU B, YANG Z Z, JIN P H, et al. Transit route network design-maximizing direct and transfer demand density[J]. Transportation Research Part C: Emerging Technologies, 2012, 22: 58-75.
[57]
CHEN J, WANG S, LIU Z, et al. Design of suburban bus route for airport access[J]. Transportmetrica A: Transport Science, 2017, 13(6): 568-589.
[58]
惠煌, 马健霄, 冯昕, 等. 城市近郊区轨道社区的接驳公交线路优化[J]. 交通运输研究, 2022, 8(5):38-45.
[59]
郑亚晶, 靳文舟. 基于IC卡数据的地铁列车开行方案的精细化编制[J]. 华南理工大学学报(自然科学版), 2015, 43(8):119-125.
[60]
王正武, 刘杰, 邹文竹. 多车场响应型接驳公交运行线路与调度的协调研究[J]. 铁道科学与工程学报, 2020, 17(7):1849-1856.
[61]
IBARRA-ROJAS O J, RIOS-SOLIS Y A. Synchronization of bus timetabling[J]. Transportation Research Part B: Methodological, 2012, 46(5): 599-614.
[62]
LIU T, CEDER A. Integrated public transport timetable synchronization and vehicle scheduling with demand assignment: A bi-objective bi-level model using deficit function approach[J]. Transportation Research Procedia, 2017, 23: 341-361.
[63]
TAO Z, TANG J, HOU K. Online estimation model for passenger flow state in urban rail transit using multi‐source data[J]. Computer‐Aided Civil and Infrastructure Engineering, 2021, 36(6): 762-780.
[64]
ARBEX R, DA CUNHA C B, SPEICYS R. Before-and-after evaluation of a bus network improvement using performance indicators from historical smart card data[J]. Public Transport, 2021, 13: 483-501.
[65]
DU Q, ZHOU Y, HUANG Y, et al. Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership[J]. Journal of Transport Geography, 2022, 102: 103380.
[66]
AHERN Z, PAZ A, CORRY P. Approximate multi-objective optimization for integrated bus route design and service frequency setting[J]. Transportation Research Part B: Methodological, 2022, 155: 1-25.
[67]
ZHONG S, JIANG Y, NIELSEN O A. Lexicographic multi-objective road pricing optimization considering land use and transportation effects[J]. European Journal of Operational Research, 2022, 298(2): 496-509.
[68]
ZHONG S, SUN J. Logic-driven traffic big data analytics: Methodology and applications for planning[M]. Singapore: Springer, 2022.

基金

国家自然科学基金项目(52272308)
国家自然科学基金项目(71971038)
国家自然科学基金项目(71701030)
山东省重点研发计划项目(2023CXPT005)
中央高校基本科研业务费项目(DUT22QN253)

PDF(2448 KB)

Accesses

Citation

Detail

段落导航
相关文章

/