
城市主干路电动自行车对机动车的干扰影响分析
Impact of Electric Bicycles Interference to Motor Vehicles on Urban Arterial Roads
为减少电动自行车对机动车的交通干扰,提高未设置非机动车道城市主干路的交通安全和通行效率,针对未设置非机动车道城市主干路电动自行车对机动车的干扰影响进行了分析。首先,采用无人机高空俯拍5条未设置非机动车道城市主干路的交通流视频,运用DataFromSky视频分析平台自动提取电动自行车和机动车的速度、轨迹、流量等数据;然后,根据交通干扰发生位置与影响后果,将电动自行车对机动车的干扰划分为无干扰、间接干扰及直接干扰,采用机动车最大横向偏移距离均值 和地点车速均值变化率ΔV两个指标来研究不同干扰下机动车横向轨迹偏移距离和速度变化的规律;最后,引入交通安全干扰系数和通行效率干扰系数量化电动自行车对机动车的干扰影响程度。结果表明:间接干扰对所有车道机动车横向轨迹变化影响均较小, 最大变化范围为-0.56~0.16 m,直接干扰对所有车道机动车横向轨迹变化影响均较大, 最大变化范围为0.23~1.61 m;交通流运行稳定时,间接干扰、直接干扰对机动车速度影响分别为较小、较大,交通流处于加速阶段时,间接干扰、直接干扰对机动车速度影响分别为很小、较小;右侧路缘带宽度从小到大的试验路段A, C, D交通安全干扰系数分别为0.939, 0.910, 0.981,通行效率干扰系数分别为0.915, 0.910, 0.959。因此,应结合道路交通条件,采用物理隔离方式设置非机动车道或增加右侧路缘带宽度使之满足电动自行车通行条件,减少电动自行车对机动车的交通干扰,提高城市主干路交通安全和通行效率。
In order to reduce the traffic interference caused by electric bicycles on motor vehicles, and improve the traffic safety and efficiency on urban arterial roads without non-motorized lanes, the impact of electric bicycles interference to motor vehicles on urban arterial roads without non-motorized lanes was analyzed and quantified. Firstly, some aerial photography of traffic flow videos of five urban arterial roads without non-motorized lanes were taken by using UAV (Unmanned Aerial Vehicle), and the data of speed, trajectory and traffic flow were automatically extracted by using DataFromSky video analysis platform. Then, according to the location and impact of traffic interference, the interference of electric bicycles to motor vehicles was divided into non interference, indirect interference and direct interference. The maximum vehicle offset distance mean and the change rate of vehicle speed mean ΔV were used to study the variation law of vehicle lateral track offset distance and speed under different interference. Finally, the interference coefficient of traffic safety and the interference coefficient of traffic efficiency were introduced to quantify the interference impact of electric bicycles on motor vehicles. The results show that indirect interference has little effect on the lateral trajectory of vehicles in all lanes, and the maximum variation range is -0.56~0.16 m, while direct interference has great effect on the lateral trajectory of vehicles in all lanes, and the maximum variation range is 0.23~1.61 m; the effects of indirect interference and direct interference on the vehicle speed of stable traffic flow are small and large respectively, while the effects of indirect interference and direct interference on the vehicle speed of accelerating traffic flow are very small and small respectively; the traffic safety interference coefficients of experimental sections A, C and D with right-side curb widths from small to large are 0.939, 0.910 and 0.981, and the traffic efficiency interference coefficients are 0.915, 0.910 and 0.959, respectively. Therefore, on the basis of considering road traffic conditions, physical isolation could be used to set up non motorized vehicle lanes or the width of the right side curb should be increased to meet the traffic conditions of electric bicycles, so as to reduce the traffic interference of electric bicycles to motor vehicles and improve the traffic safety and efficiency on the urban arterial roads.
城市主干路 / 电动自行车 / 交通干扰 / 交通安全 / 通行效率
urban arterial roads / electric bicycle / traffic disturbance / traffic safety / traffic efficiency
[1] |
公安部道路交通安全研究中心, 北京工业大学, 同济大学. 城市电动自行车骑行调研分析报告[R]. 北京: 公安部道路交通安全研究中心, 2022.
|
[2] |
朱秭硕. 基于深度调查数据的二轮车骑行者多部位损伤模型及影响因素分析[D]. 西安: 长安大学, 2022.
|
[3] |
贾顺平, 彭宏勤, 尹相勇. 机非混行路段上自行车对机动车行驶的摩擦干扰影响分析[J]. 北京交通大学学报, 2006, 30(6):1-5.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
宋占国, 陈红, 赵丹婷, 等. 混合交通中自行车对机动车行驶速度横向干扰分析[J]. 铁道科学与工程学报, 2017, 14(8):1783-1791.
|
[9] |
秦丽辉, 裴玉龙, 白崇喜. 自行车干扰下的城市干路路段通行能力与服务水平[J]. 哈尔滨工业大学学报, 2018, 50(9):61-67.
|
[10] |
曾俊伟, 马皓, 钱勇生, 等. 自行车阻滞干扰对机动车交通流延误改进模型[J]. 数学的实践与认识, 2019, 49(3):200-205.
|
[11] |
陈亦新, 贺玉龙, 孙小端, 等. 行人干扰对左转车流速度和加速规律影响及量化[J]. 交通运输系统工程与信息, 2015, 15(1):198-204.
|
[12] |
郝妍熙, 刘戎阳, 胡华, 等. 单向通道行人-自行车混合流建模及自组织现象研究[J]. 交通运输系统工程与信息, 2022, 22(2):223-229.
|
[13] |
黄艳国, 张升升, 谭卢敏. 非机动车干扰下信号交叉口的通行能力计算[J]. 科学技术与工程, 2022, 22(27):12192-12200.
|
[14] |
曲昭伟, 高雨虹, 宋现敏. 信号交叉口车路环境对电动自行车释放膨胀特性的影响分析[J]. 中国公路学报, 2020, 33(4):126-136.
|
[15] |
刘岩, 付川云, 王炜. 基于贝叶斯Logistic模型的非机动车对机动车干扰行为研究[J]. 安全与环境学报, 2020, 20(6):2045-2051.
|
[16] |
张旭, 朱普周, 段宇洲. 基于城市信号交叉口直行非机动车膨胀特性研究[J]. 安全与环境学报, 2021, 21(5):1978-1984.
|
[17] |
秦余, 于泉. 信号交叉口行人与非机动车干扰特性分析[J]. 交通运输研究, 2017, 3(3):20-29,35.
|
[18] |
周旦, 姚威振, 顾国斌, 等. 公交站台区域电动自行车与行人通行冲突演化博弈模型[J]. 交通信息与安全, 2021, 39(5):27-35.
|
[19] |
郑玉冰, 马羊, 程建川, 等. 基于轨迹数据的非机动车道内冲突事件自动识别与可视化[J]. 中国公路学报, 2022, 35(1):71-84.
|
[20] |
付川云, 熊长林, 刘岩. 物理隔离条件下非机动车间干扰特征及影响因素研究[J]. 安全与环境学报, 2021, 21(3):1111-1117.
|
[21] |
顾文晨. 多车道条件下高速公路车道管理适应性研究[D]. 西安: 长安大学, 2021.
|
[22] |
李景密. 跟驰状态下城市主干道交通流特征研究[D]. 长沙: 湖南大学, 2016.
|
/
〈 |
|
〉 |