内河航道船舶尾气快速排放清单研究——以长江江苏段为例

苑帅, 封学军, 朱逸凡

交通运输研究 ›› 2020, Vol. 6 ›› Issue (2) : 91-100.

PDF(2032 KB)
PDF(2032 KB)
交通运输研究 ›› 2020, Vol. 6 ›› Issue (2) : 91-100.

内河航道船舶尾气快速排放清单研究——以长江江苏段为例

  • 苑帅,封学军,朱逸凡
作者信息 +

Rapid Inventory of Ship Exhaust Emissions for Inland Waterway: a Case Study in Jiangsu Section of Yangtze River

  • Yuan Shuai, Feng Xue-jun, Zhu Yi-fan
Author information +
文章历史 +

摘要

为高效计算和分配内河航道船舶尾气污染排放,支撑船舶排放控制区建设,提出了一种内河航道船舶尾气排放清单快速计算方法。以长江江苏段为例,选取10个控制断面,基于船舶自动识别系统(Automatic Identification System, AIS)和劳氏船级社数据库,采用船舶交通排放估算模型(Ship Traffic Emission Assessment Model, STEAM),建立10个控制断面的船舶排放清单,在分析各断面污染物空间分布特征的基础上,采用反距离加权插值法(Inverse Distance Weighted, IDW)建立连续排放模型,计算断面间的船舶排放。结果表明:2017年长江江苏段船舶尾气排放SO2, NOx, PM10, PM2.5, CO和挥发性有机物(Volatile Organic Compound, VOC)分别为5.53万t, 19.21万t, 1.25万t, 0.95万t, 0.98万t和0.45万t。与使用全部AIS数据的传统STEAM相比,该方法在保证80%计算精度的基础上,能显著减少计算所需数据量和时间。

Abstract

In order to effectively calculate and distribute the ship exhaust emissions in inland waterway, and support the construction of emission control area, a new method to develop a rapid ship emission inventory was proposed. Taking Jiangsu section of Yangtze River (JYR) as an example, based on the database of Automatic Identification System (AIS) and Lloyd′s Register of Shipping, the emission inventory of 10 control sections which were selected in JYR was established by using Ship Traffic Emission Assessment Model (STEAM). After analyzing the spatial distribution characteristics of pollutants in each section, a continuous emission model was established by using the Inverse Distance Weighted (IDW) to estimate the ship emissions between each section. The results show that the ship exhaust emissions of SO2, NOx, PM10, PM2.5, CO and Volatile Organic Compound (VOC) are 55.3×103t, 192.1×103t, 12.5×103t, 9.5×103t, 9.8×103t and 4.5×103t respectively. Compared with the conventional STEAM using all AIS data of the whole JYR, the proposed method can significantly reduce the amount of data and calculation time on the basis of 80% accuracy.

关键词

内河航道 / 船舶尾气 / 控制断面 / 反距离加权插值法 / 连续排放模型

Key words

inland waterway / ship exhaust / control section / inverse distance weighted (IDW) / continuous emission model

引用本文

导出引用
苑帅, 封学军, 朱逸凡. 内河航道船舶尾气快速排放清单研究——以长江江苏段为例[J]. 交通运输研究. 2020, 6(2): 91-100
Yuan Shuai, Feng Xue-jun, Zhu Yi-fan. Rapid Inventory of Ship Exhaust Emissions for Inland Waterway: a Case Study in Jiangsu Section of Yangtze River[J]. Transport Research. 2020, 6(2): 91-100

参考文献

[1]商轶. 中国船舶排放控制区政策的减排效果及成本收益预测[D]. 北京:清华大学,2017.
[2]Chen D S, Tian X L, Lang J L, et al. The Impact of Ship Emissions on PM2.5 and the Deposition of Nitrogen and Sulfur in Yangtze River Delta, China[J]. Science of the Total Environment, 2019, 649: 1609-1619.
[3]Mamoudou I, Zhang F, Chen Q, et al. Characteristics of PM2.5 from Ship Emissions and Their Impacts on the Ambient Air: A Case Study in Yangshan Harbor, Shanghai[J]. Science of The Total Environment, 2018, 640-641: 207-216.
[4]Lack D A, Cappa C D, Langridge J, et al. Impact of Fuel Quality Regulation and Speed Reductions on Shipping Emissions: Implications for Climate and Air Quality[J]. Environmental Science & Technology, 2011, 45(20): 9052-9060.
[5]刘欢,商轶,金欣欣,等. 船舶排放清单研究方法及进展[J]. 环境科学学报,2018,38(1):1-12.
[6]Jalkanen J P, Brink A, Kalli J, et al. A Modelling System for the Exhaust Emissions of Marine Traffic and Its Application in the Baltic Sea Area[J]. Atmospheric Chemistry and Physics, 2009, 9(23): 9209-9223.
[7]Jalkanen J P, Johansson L, Kukkonen J, et al. Extension of an Assessment Model of Ship Traffic Exhaust Emissions for Particulate Matter and Carbon Monoxide[J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2641-2659.
[8]Jalkanen J P, Johansson L, Kukkonen J. A Comprehensive Inventory of the Ship Traffic Exhaust Emissions in the Baltic Sea from 2006 to 2009[J]. Ambio, 2014, 43(3): 311-324.
[9]Jalkanen J P, Johansson L, Kukkonen J. A Comprehensive Inventory of Ship Traffic Exhaust Emissions in the European Sea Areas in 2011[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 71-84.
[10]Johansson L, Jalkanen J P, Kukkonen J. Global Assessment of Shipping Emissions in 2015 on a High Spatial and Temporal Resolution[J]. Atmospheric Environment, 2017, 167: 403-415.
[11]Goldsworthy L, Goldsworthy B. Modelling of Ship Engine Exhaust Emissions in Ports and Extensive Coastal Waters Based on Terrestrial AIS Data-An Australian Case Study[J]. Environmental Modelling & Software, 2015, 63: 45-60.
[12]Goldsworthy B. Spatial and Temporal Allocation of Ship Exhaust Emissions in Australian Coastal Waters Using AIS Data: Analysis and Treatment of Data Gaps[J]. Atmospheric Environment, 2017, 163: 77-86.
[13]杨柳,许洪磊. 港口营运期PM2.5环境影响评价方法研究[J]. 安全与环境工程,2014,21(4):85-90.
[14]顾建,王伟,彭宜蔷,等. 基于STEAM的靠港船舶大气污染物排放清单研究[J]. 安全与环境学报,2017,17(5):1963-1968.
[15]封学军,苑帅,张艳,等. 长江江苏段船舶大气污染物排放清单及时空分布特征研究[J].安全与环境学报,2018,18(4):1609-1614.
[16]Coello J, Williams I, Hudson D A, et al. An AIS-based Approach to Calculate Atmospheric Emissions from the UK Fishing Fleet[J]. Atmospheric Environment, 2015, 114: 1-7.
[17]Li C, Yuan Z B, Ou J M, et al. An AIS-based High-resolution Ship Emission Inventory and Its Uncertainty in Pearl River Delta region, China[J]. Science of the Total Environment, 2016, 573: 1-10.
[18]Corbett J J, Fischbeck P S. Emissions from Waterborne Commerce Vessels in United States Continental and Inland Waterways[J]. Environmental Science & Technology, 2000, 34(15): 3254-3260.
[19]Van L T, Macharis C. Assessing the Environmental Impact of Inland Waterway Transport Using a Life-cycle Assessment Approach: The Case of Flanders[J]. Research in Transportation Business & Management, 2014, 12: 29-40.
[20]陈宝宓,顾晓平. 江苏港口生产高歌猛进[N/OL]. 江苏工人报,2018-03-12(4)[2019-11-15]. 
[21]Huang L, Wen Y Q, Geng X Q, et al. Estimation and Spatio-temporal Analysis of Ship Exhaust Emission in a Port Area[J]. Ocean Engineering, 2017, 140: 401-411.
[22]Chen D S, Wang X T, Li Y, et al. High-Spatiotemporal-Resolution Ship Emission Inventory of China Based on AIS Data in 2014[J]. Science of The Total Environment, 2017, 609: 776-787.
[23]尹佩玲,黄争超,郑丹楠,等. 宁波—舟山港船舶排放清单及时空分布特征[J]. 中国环境科学,2017,37(1):27-37.
[24]张健. 南京市大气环境污染点源数据的空间插值方法[D]. 南京:南京信息工程大学,2009.
[25] 中华人民共和国海事局. 内河船舶法定检验技术规则[M]. 北京:人民交通出版社,2019.
[26]朱逸凡,雷智鹢,封学军,等. 基于AIS大数据的长江江苏段船舶大气污染物排放清单研究[J]. 环境科技,2019,32(4):41-46.

基金

国家自然科学基金项目(41401120);国家重点研发计划项目(2019YFC0409004);中央高校基本科研业务费专项资金资助项目(2018B654X14);江苏省研究生科研与实践创新计划项目(KYCX18_0614);江苏省交通运输科技与成果转化项目(2018Y01)

PDF(2032 KB)

Accesses

Citation

Detail

段落导航
相关文章

/