车联网环境对城市快速路驾驶安全的影响评价

姚佼,倪屹聆,戴亚轩

交通运输研究 ›› 2020, Vol. 6 ›› Issue (2) : 83-90.

PDF(1511 KB)
PDF(1511 KB)
交通运输研究 ›› 2020, Vol. 6 ›› Issue (2) : 83-90.

车联网环境对城市快速路驾驶安全的影响评价

  • 姚佼,倪屹聆,戴亚轩
作者信息 +

Influence Evaluation of Internet of Vehicles Environment on Driving Safety of Urban Expressway

  • Yao Jiao, Ni Yi-ling, Dai Ya-xuan
Author information +
文章历史 +

摘要

为明确不同情形下车联网对城市快速路交通安全的影响程度,首先,在分析车联网对快速路驾驶行为影响的基础上,对车联网和常规驾驶环境下的驾驶模型参数进行了标定;然后,选取累计碰撞时间(Time Exposed Time-to-collision, TET)和积分碰撞时间(Time Integrated Time-to-collision,TIT)指标对快速路纵向驾驶行为进行安全评价,选取侧向碰撞风险(Sideswipe Crash Risk, SSCR)作为快速路横向换道驾驶安全的评价指标;最后,基于VISSIM设计快速路进行仿真试验,考虑车联网和常规驾驶环境,研究不同渗透率和饱和度条件下网联车对纵向追尾和横向换道驾驶行为的安全影响程度。研究结果表明:车联网环境下网联车渗透率对快速路驾驶行为的影响呈现出缓慢提升(0~50%)、快速提升(50%~75%)及显著提升(75%~100%)三阶段,其中TET指标分别对应降低14.57%, 30.10%和49.01%;车联网环境下,交通饱和度对快速路的交通安全影响则呈现出先快后慢的改善趋势。当网联车渗透率超过75%之后,交通安全提升程度最为明显;车联网环境中,当快速路交通饱和度低于0.8时,交通安全改善程度更为显著。

Abstract

In order to understand the influence degree of Internet of Vehicles (IOV) on urban expressway traffic safety under different situations, firstly, the influence of IOV on the driving behavior of expressway was analyzed, and the driving model parameters under IOV and normal driving environment were calibrated. Then, Time Exposed Time-to-collision (TET) and Time Integrated Time-to-collision (TIT) were selected to evaluate the safety of longitudinal driving behavior, and the Sideswipe Crash Risk (SSCR) was selected as the evaluation index of the lateral lane changing driving safety. Finally, based on the VISSIM design of the expressway simulation experiment, considering the IOV and conventional driving environment, the safety impact of the internet vehicles on the longitudinal rear-end and lateral lane-changing driving behavior under different permeability rate and saturation conditions were studied. The research results show that under the environment of the IOV, the influence of the penetration rate of the internet vehicles on the driving behavior of the expressway presents three stages: slowly increasing (0~50%), rapidly increasing (50%~75%), significantly increasing (75%~100%), and TET decreases by 14.57%, 30.10% and 49.01% respectively; The influence of traffic saturation on the traffic safety of expressway shows a trend of improving from fast to slow; When the penetration rate of the internet vehicle exceeds 75%, the traffic safety improvement degree of traffic safety is the most obvious; When the traffic saturation of expressway is lower than 0.8, the improvement of traffic safety is more significant.

关键词

车联网 / 城市快速路 / 驾驶行为 / 安全评价指标 / 影响评价

Key words

Internet of Vehicles(IOV) / urban expressway / driving behavior / indicators of safety evaluation / evaluation of impact

引用本文

导出引用
姚佼,倪屹聆,戴亚轩. 车联网环境对城市快速路驾驶安全的影响评价[J]. 交通运输研究. 2020, 6(2): 83-90
Yao Jiao, Ni Yi-ling, Dai Ya-xuan. Influence Evaluation of Internet of Vehicles Environment on Driving Safety of Urban Expressway[J]. Transport Research. 2020, 6(2): 83-90

参考文献

[1]佘冬翠. 城市快速路交通安全设施系统评价研究[D].南京:南京林业大学,2017.
[2]游月省.交通事故下城市快速路通行能力及改善措施研究[D].西安:长安大学,2014.
[3]张丽霞,刘涛,潘福全,等.驾驶员因素对道路交通事故指标的影响分析[J].中国安全科学学报,2014,24(5):79-84.
[4]秦严严,王昊.智能网联车辆交通流优化对交通安全的改善[J].中国公路学报,2018,31(4):202-210.
[5]秦严严,王昊,王炜,等.自适应巡航控制车辆跟驰模型综述[J].交通运输工程学报, 2017,17(3):121-130.
[6]Moon S, Moon I, Yi K. Design, Tuning, and Evaluation of a Full-range Adaptive Cruise Control System with Collision Avoidance[J]. Control Engineering Practice, 2009, 17(4): 442-455.
[7]Li Y, Wang H, Wang W, et al. Evaluation of the Impacts of Cooperative Adaptive Cruise Control on Reducing Rear-end Collision Risks on Freeways[J]. Accident Analysis & Prevention, 2017, 98(10): 87-95.
[8]Rahman M S, Abdel-Aty M. Longitudinal Safety Evaluation of Connected Vehicles Platooning on Expressways[J]. Accident Analysis & Prevention, 2017, 98(12): 381-391.
[9]李腾龙.车联网环境下跟驰行为建模及交通流稳定性分析[D].西安:长安大学,2017.
[10]龚思远.车路协同跟车辅助下的驾驶员跟驰行为研究[D].长春:吉林大学,2013.
[11]华雪东,王炜,王昊.考虑车与车互联通讯技术的交通流跟驰模型[J].物理学报,2016,65(1):13-25.
[12]金盛,王殿海.考虑前方交通状态的车辆跟驰模型与数值仿真[J].北京工业大学学报,2012,38(8):1236-1241.
[13]刘有军,张海林,何莉.基于安全间距反馈控制的协同跟驰建模与仿真[J].公路交通科技,2012,29(10):102-108,132.
[14]李志伟.智能网联车辆与普通车辆混合车流交通状态估计方法研究[D].南京:东南大学,2017.
[15]Habtemichael F G, Luis D P S. Crash Risk Evaluation of Aggressive Driving on Motorways: Microscopic Traffic Simulation Approach[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 23(6): 101-112.
[16]Alkis P, Mohammed Q, Marianna I. Evaluating the Safety Impact of Connected and Autonomous Vehicles on Motorways[J]. Accident Analysis & Prevention, 2019, 124(3): 12-22.
[17]Michiel M M, Piet H L. Extended Time-to-Collision Measures for Road Traffic Safety Assessment[J]. Accident Analysis & Prevention, 2001, 33(1): 89-97.
[18]Peng Y, Abdel M, Shi Q, et al. Assessing the Impact of Reduced Visibility on Traffic Crash Risk Using Microscopic Data and Surrogate Safety Measures[J]. Transportation Research Part C: Emerging Technology, 2017, 74(12): 295-305.
[19]Oh C, Park S, Ritchie S G. A Method for Identifying Rear-end Collision Risks Using Inductive Loop Detectors[J]. Accident Analysis & Prevention, 2006, 38(2): 295-301.
[20]中华人民共和国住房和城乡建设部. 城市快速路设计规程:CJJ 129—2009[S]. 北京:中国建筑工业出版社,2009.

PDF(1511 KB)

Accesses

Citation

Detail

段落导航
相关文章

/