道路阻抗是交通分配和路网规划中的重要参数,是路网属性抽象的重要内容之一。为给道路阻抗函数研究提供新思路和新方法,更好服务于交通分配和路网规划,针对路阻函数的研究背景及现实意义,从路阻函数研究方法和影响因素两方面综合对比分析各种路阻函数模型的优缺点,分析得出既有研究多以美国联邦公路局(Bureau of Public Roads, BPR)函数为基础,针对BPR函数本身缺陷进行优化,或加入其他影响路阻的因素进行优化。在此基础上,总结得出目前路阻函数研究中存在不重视数据采集、函数内参数不可靠、函数适应性不强等问题。最后,对未来研究方向进行了展望,未来可应用车联网、自动驾驶等前沿技术采集数据,应用大数据和人工智能算法提高参数可靠度,提出适用于自动驾驶的路阻函数,制定路阻函数适应性标准,扩大路阻函数应用范围。
Abstract
Road impedance is an important parameter for traffic distribution and road network planning, as well as one of the important contents of road network attribute abstraction. In order to provide new ideas and methods for studying road impedance functions, and better serve the traffic distribution and road network planning, in view of the research background and practical significance of road impedance function, the advantages and disadvantages of various road impedance function models were analyzed from the aspects of research methods and influencing factors. The existing studies were mostly based on the Bureau of Public Roads (BPR) function. They either optimized the BPR function, or introduced other factors that impacted road impedance. On this basis, it was concluded that there were some problems in the existing study of road impedance functions, such as data collection not seriously taken, parameters in functions not reliable, and the adaptabilities of those functions not strong enough. Finally, the future research directions on this topic were discussed. The leading-edge technology will be used, such as using car networking and automatic driving to collect data, using big data and AI algorithm to improve parameter reliability. A road impedance function suitable for automatic driving will be proposed. The adaptability standard of road impedance function will be formulated. The application range of road impedance function will be expanded.
关键词
交通工程 /
道路阻抗 /
美国联邦公路局函数 /
多目标组合 /
行程时间
Key words
traffic engineering /
road impedance /
Bureau of Public Roads (BPR) function /
multi-objective combination /
travel time
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]王炜,陈学武. 交通规划[M]. 2版. 北京:人民交通出版社,2017.
[2]Bureau of Public Roads. Traffic Assignment Manual[Z]. Washington DC: Urban Planning Division, US Department of Commerce, 1964.
[3]Nobel D, Yagi S. Network Assignment Calibration of BPR Function: A Case Study of Metro Manila, the Philippines[J]. Journal of the Eastern Asia Society for Transportation Studies, 2017, 12: 598-615.
[4]Spiess H. Conical Volume-Delay Functions[J]. Transportation Science, 1990, 24(2): 153-158.
[5]Davidson K B. The Theoretical Basis of a Flow-travel Time Relation-Ship for Use in Transportation Planning[J]. Australian Road Research, 1978, 8(1): 32-35.
[6]Akcelik R. Travel Time Function for Transport Planning Purposes: Davidson′s Function, its Time Dependent Form and Alternative Travel Time Function[J]. Australian Road Research, 1991, 21(3): 49-59.
[7]王素欣,王雷震,高利,等. BPR路阻函数的改进研究[J]. 武汉理工大学学报(交通科学与工程版),2009,33(3):446-449.
[8]Rafal K, Arkadiusz D. Estimating Macroscopic Volume Delay Functions with the Traffic Density Derived from Measured Speeds and Flows[J]. Journal of Advanced Transportation, 2017(3): 1-10.
[9]Huntsinger L F, Rouphail N M. Bottleneck and Queuing Analysis: Calibrating Volume-Delay Functions of Travel Demand Models[J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2255(1): 117-124.
[10]Yuan G, Chen Y Y, Lu Y, et al. Research on the Road Resistant Function Model of Urban Expressway[C]// CICTP 2019: Transportation in China-Connecting the World. Reston: ASCE, 2019: 5257-5268.
[11]刘宁,赵胜川,何南. 基于BPR函数的路阻函数研究[J]. 武汉理工大学学报(交通科学与工程版),2013,37(3):545-548.
[12]Neuhold R, Fellendorf M. Volume Delay Functions Based on Stochastic Capacity[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2421(1): 93-102.
[13]温惠英,卢德佑,汤左淦. 考虑行程时间波动性的城市道路阻抗函数模型[J]. 公路工程,2019,44(3):27-32.
[14]Zhang J J, Liu M M, Zhou B. Analytical Model for Travel Time-Based BPR Function with Demand Fluctuation and Capacity Degradation[J]. Mathematical Problems in Engineering, 2019(5): 1-13.
[15]刘利娟,张宁. 弹性需求下路段行程时间波动的收敛性[J]. 交通运输系统工程与信息,2016(1):169-175.
[16]孟维伟,段妍,屈芳. 考虑行程时间可靠性的阻抗函数及其应用[J]. 公路与汽运,2015(1):40-44.
[17]杨庆芳,韦学武,林赐云,等. 基于时空贝叶斯模型的行程时间可靠性预测[J]. 华南理工大学学报(自然科学版),2016,44(4):115-122.
[18]智路平,周溪召. 考虑服务水平的路段随机动态行程时间可靠性[J]. 中山大学学报(自然科学版),2017,56(4):51-57.
[19]王元庆,周伟,吕连恩. 道路阻抗函数理论与应用研究[J]. 公路交通科技,2004,21(9):82-85.
[20]Han S J. A Route-Based Solution Algorithm for Dynamic User Equilibrium Assignments[J]. Transportation Research Part B: Methodological, 2007, 41(10): 1094-1113.
[21]张盈盈. 利用AHP法引入服务水平的综合交通阻抗函数模型[J]. 公路交通科技,2007,24(3):115-117,125.
[22]杨皓宇,邸妍妍,汪博文. 基于层次分析的交通路阻理论标准模型[J]. 中国标准化,2017(20):250-252.
[23]Muller S, Schiller C. Improvement of the Volume-delay Function by Incorporating the Impact of Trucks on Traffic Flow[J]. Transportation Planning and Technology, 2015, 38(8): 878-888.
[24]Lu Z Y, Meng Q, Gomes G. Estimating Link Travel Time Functions for Heterogeneous Traffic Flows on Freeways[J]. Journal of Advanced Transportation, 2016, 50(8): 1683-1698.
[25]Zhang X, Waller S T. Link Performance Functions for High Occupancy Vehicle Lanes of Freeways[J]. Transport, 2018, 33(2): 657-668.
[26]四兵锋,钟鸣,高自友. 城市混合交通条件下路段阻抗函数的研究[J]. 交通运输系统工程与信息,2008,8(1):68-73.
[27]任刚,刘晓庆,全林花. 混合交通条件下的城市道路实用路阻函数[J]. 中国公路学报,2009,22(4):92-95.
[28]何南,赵胜川. 城市道路阻抗函数模型研究——以大连市为例[J]. 公路交通科技,2014,32(2):104-108.
[29]虞春滨,杜牧青,刘海生. 基于模糊感知阻抗的交通分配研究[J]. 武汉理工大学学报(交通科学与工程版),2019,43(3):548-553.
[30]王有为,张子阳. 封闭式独立路权下公交车路阻函数研究[J]. 公路交通技术,2016,32(4):134-138,144.
[31]张子阳. 公交优先规则下的路阻函数研究[D]. 重庆:重庆交通大学,2015.
[32]李铁柱,丁建友,孙云峰,等. 城市主干道公交专用道设置交通条件研究[J]. 昆明理工大学学报(理工版),2010,35(1):56-60.
[33]张俊友,宋博文. 基于公交车的多车型动态路阻函数建模与仿真[J]. 公路,2014,59(1):135-139.
[34]朱丽南. 北京市常规公交站点停靠对交通局部拥堵的影响研究[D]. 北京:北京工业大学,2018.
[35]左忠义,杨广川,邵春福. 基于公交优先的小汽车出行向公交转移模型研究[J]. 交通运输系统工程与信息,2011,12(1):124-130.
[36]朱斌宁,郑长江. 停车场对连接路段车辆速度的影响研究[J]. 华东交通大学学报,2019,36(1):73-78.
[37]So J, Stevanovic A, Ostojic M. Methodology to Estimate Volume-Capacity Ratios at Traffic Signals Based on Upstream-Link Travel Times[J]. Journal of Transportation Engineering Part A: Systems, 2017, 143(4): 04017002.
[38]Anwar A, Fujiwara A, Zhang J. Newly Developed Link Performance Functions Incorporating the Influence of On-Street Occupancy for Developing Cities: Study on Dhaka City of Bangladesh[C]//Proceedings of the 90th Annual Meeting of the Transportation Research Board. Washington DC: Transportation Research Board, 2011: 2988-3008.
[39]刘凯,吕晓华,李爱光,等. 顾及天气影响的动态路网最优路径研究[J]. 测绘与空间地理信息,2017,40(3):208-212.
[40]Bagherian M, Hickmana M, Tavassolia A. Considering the Impact of Precipitation on the Accuracy of Delay-Function Parameters[C]// Australasian Transport Research Forum 2017 Proceedings. Auckland: ATRF, 2017.
[41]Wang Y Q, Zhou C F, Jia B, et al. Reliability Analysis of Degradable Networks with Modified BPR[J]. Modern Physics Letters B, 2017, 31(36): 1750353.
[42]Kim S, Choi J, Lee D, et al. Model of Volume-Delay Formula to Assess Travel Time Savings of Underground Tunnel Roads[J]. KSCE Journal of Civil Engineering, 2014, 18(6): 1839-1846.
[43]Engelson L, Amelsfort D V. The Role of Volume-Delay Functions in Forecasting and Evaluating Congestion Charging Schemes: the Stockholm Case[J]. Transportation Planning and Technology, 2015, 38(6): 684-707.
[44]覃文敏,张小雷,杨兆萍,等. 基于路阻函数的旅游交通可达性研究——以新疆3A级及以上级别景区为例[J]. 干旱区研究,2015,32(2):361-367.
[45]Petrik O, Moura F, Silva J A. The Influence of the Volume-Delay Function on Uncertainty Assessment for a Four-Step Model[J]. Advances in Intelligent Systems and Computing, 2014, 262: 293-306.
[46]Saric A, Albinovic S, Dzebo S, et al. Volume-Delay Functions: A Review[C]// International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies. Sarajevo: IAT, 2018: 3-12.
[47]Wong W, Wong S C. Network Topological Effects on the Macroscopic Bureau of Public Roads Function[J]. Transportmetrica A: Transport Science, 2016, 12(3): 272-296.
[48]周林,马晓凤,钟鸣. 基于出租车GPS数据的城市次干道阻抗函数研究[J]. 交通信息与安全,2017,35(3):34-42.
[49]Di X, He X Z, Guo X L, et al. Braess Paradox under the Boundedly Rational User Equilibria[J]. Transportation Research Part B: Methodological, 2014, 67: 86-108.
[50]Dell′ Orco M, Marinelli M, Silgu M A. Bee Colony Optimization for Innovative Travel Time Estimation, Based on a Mesoscopic Traffic Assignment Model[J]. Transportation Research Part C: Emerging Technologies, 2016, 66: 48-60.
[51]Foytik P, Cetin M. Using Genetic Algorithms to Estimate the Parameters of Volume Delay Functions[C]// Proceedings of the 90th Annual Meeting of the Transportation Research Board. Washington DC: Transportation Research Board, 2011: 3730-3742.
基金
国家重点研发计划项目(2018YFB1600900);国家自然科学基金项目(71871010);浙江省基础公益研究计划项目(GF20E080034);浙江省自然科学基金项目(LY20E080011)