基于新型冠状病毒传播机理的交通出行易感度研究

张毅, 王雪成, 毕清华

交通运输研究 ›› 2020, Vol. 6 ›› Issue (1) : 73-80.

PDF(1631 KB)
PDF(1631 KB)
交通运输研究 ›› 2020, Vol. 6 ›› Issue (1) : 73-80.
战“疫”专刊

基于新型冠状病毒传播机理的交通出行易感度研究

  • 张毅,王雪成,毕清华
作者信息 +

Travel-Infected Susceptibility Based on Transmission Mechanism of COVID-19

  • Zhang Yi, Wang Xue-cheng and Bi Qing-hua
Author information +
文章历史 +

摘要

为科学判断各交通方式出行过程中人群感染病毒的风险概率进而有效控制病毒传播,借助空气传染病模型,根据已发布的新型冠状病毒传播机理,构建了交通出行的病毒易感度评估模型,模型包含对病毒传播有重要影响的通风、载客密度、暴露时间等主要参数。选用各种运输方式中有代表性的运载工具进行不同假设情景下的易感度评估,结果表明,在各种有效防控措施均得以采用的情景下,乘坐交通工具的易感度相比高危情景降低97%以上,相比基准情景降低93%以上。研究可为交通领域的科学防疫、精准施策提供依据。

Abstract

In order to scientifically judge the risk probability of virus infection among people who have traveled in various transportation modes and effectively control the spread of virus, an airborne disease model was used to establish a risk assessment model for the infected susceptibility during travel based on the published Corona Virus Disease 2019(COVID-19) transmission mechanism. The main parameters that have important effect on the spread of the disease were included, such as ventilation, carrying density and exposure time. The representative means of various transportation modes were selected to evaluate the susceptibility under different scenarios. The results showed that, under the situation that all kinds of effective control and prevention measures were adopted, the travel-infected susceptibility was reduced by more than 97% compared with the high-risk situation, and 93% compared with the baseline situation. It could provide a basis for scientific epidemic prevention and precision strategy in transportation industry.

关键词

新冠肺炎疫情 / 传播机理 / 交通出行易感度 / 风险评估 / 交通出行防护建议

Key words

Corona Virus Disease 2019(COVID-19) / transmission mechanism / travel-infected susceptibility / risk assessment / transportation protection recommendations

引用本文

导出引用
张毅, 王雪成, 毕清华. 基于新型冠状病毒传播机理的交通出行易感度研究[J]. 交通运输研究. 2020, 6(1): 73-80
Zhang Yi, Wang Xue-cheng and Bi Qing-hua. Travel-Infected Susceptibility Based on Transmission Mechanism of COVID-19[J]. Transport Research. 2020, 6(1): 73-80

参考文献

[1]Jin Y H, Cai L, Cheng Z S, et al. A Rapid Advice Guideline for the Diagnosis and Treatment of 2019 Novel Coronavirus (2019-nCoV) Infected Pneumonia (Standard Version )[J]. Medical Journal of Chinese People′s Liberation Army, 2020, 45(1): 1-20.
[2]Shen K L, Yang Y H, Wang T Y, et al. Diagnosis, Treatment, and Prevention of 2019 Novel Coronavirus Infection in Children: Experts′ Consensus Statement[J/OL]. World Journal of Pediatrics. 
[3]Wang D W, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China[J/OL]. The Journal of the American Medical Association. 
[4]World Health Organization. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (nCoV) Infection is Suspected: Interim Guidance[EB/OL]. (2020-01-28)[2020-02-20]. 
[5]Wells W F. On Air-borne Infection Study Ⅱ: Droplets and Droplet Nuclei[J]. American Journal of Epidemiology, 1934, 20(3): 611-618.
[6]Ratcliffe H L, Wells W F. Tuberculosis of Rabbits Induced by Droplet Nuclei Infection: Initial Response to Infection[J]. Journal of Experimental Medicine, 1948, 87(6): 575-584.
[7]钱华,郑晓红,张学军. 呼吸道传染病空气传播的感染概率的预测模型[J]. 东南大学学报(自然科学版),2012,42(3):468-472.
[8]World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report-30[EB/OL]. (2020-02-19)[2020-02-20]. 
[9]国家卫生健康委疾病预防控制局. 公共场所新型冠状病毒感染的肺炎卫生防护指南[Z]. 北京:国家卫生健康委疾病预防控制局,2020.
[10]崔玉美,陈姗姗,傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学,2017,14(4):14-31.
[11]周延平,邹全民. 关于客车顶置空调优化安装设计的探讨[J]. 城市车辆,2005(3):53-54.
[12]张莉萍,倪骏,郑毅鸣,等. 公共场所集中空调通风系统新风量测定方法分析[J]. 中国卫生检验杂志,2017,27(24):3647-3648.
[13]贺凯波,施柱,阳涛,等. 城轨车辆空调通风系统风量测试方法研究[J]. 技术与市场,2018,25(8):82-83,86.

PDF(1631 KB)

Accesses

Citation

Detail

段落导航
相关文章

/