基于logistic回归分析的路段人行横道机动车让行研究

唐煜,韩印,付晶燕

交通运输研究 ›› 2019, Vol. 5 ›› Issue (6) : 85-91.

PDF(1432 KB)
PDF(1432 KB)
交通运输研究 ›› 2019, Vol. 5 ›› Issue (6) : 85-91.
城市交通

基于logistic回归分析的路段人行横道机动车让行研究

  • 唐煜,韩印,付晶燕
作者信息 +

Vehicle Yielding Behavior at Mid-Block Crosswalks Based on Logistic Regression

  • Tang Yu, Han Yin and Fu Jing-yan
Author information +
文章历史 +

摘要

为探究道路交通条件对路段人行横道机动车让行的影响,通过无人机视频调查,采集了20处路段人行横道机动车通行过程数据,在对logistic模型应用条件进行检验的基础上,建立了路段人行横道机动车让行概率模型,并检验了模型的准确性。模型分析结果表明,安全间距、车速、监控、车道数、行人数量和行人位置对让行率具有显著影响;通过增设监控和行人中央驻足区可分别提高让行率为原来的3.700倍和4.339倍,当车道数大于4时,即使采取监控措施让行率仍将小于30%,应采用信号控制。

Abstract

In order to analyze the factors that affect the vehicle yielding behavior at crosswalk, the impact of road and traffic conditions on the vehicle yielding behavior at mid-block crosswalks was studied based on the field data. Using the Unmanned Aerial Vehicle (UAV), the traffic data of vehicles passing through the crossings at 20 mid-block crosswalks were collected. Based on the tests of the application presuppositions of the logistic model, the vehicle yielding probability model was established. The accuracy of the model was tested. The results of model analysis show that the safety space gap, vehicle speed, monitoring, number of lanes, number of pedestrians, and pedestrian position have significant impact on the yielding rate; by adding monitoring and pedestrian central island, the yielding rate can be increased by 3.700 times and 4.339 times respectively; when the number of lanes is more than 4, the yielding rate is less than 30% even if the monitoring is set, and the signal control should be used in that condition.

关键词

城市交通 / 机动车让行概率 / logistic回归分析 / 道路交通设施 / 路段人行横道

Key words

urban traffic / vehicle yielding probability / logistic regression / road traffic facilities / mid-block crosswalks

引用本文

导出引用
唐煜,韩印,付晶燕. 基于logistic回归分析的路段人行横道机动车让行研究[J]. 交通运输研究. 2019, 5(6): 85-91
Tang Yu, Han Yin and Fu Jing-yan. Vehicle Yielding Behavior at Mid-Block Crosswalks Based on Logistic Regression[J]. Transport Research. 2019, 5(6): 85-91

参考文献

[1]裴玉龙,王炜.道路交通事故成因及预防对策[M]. 北京:科学出版社,2004.
[2]石京,陶立,白云.北京市机动车驾驶员“抢行”行为及影响因素分析[J] . 中国安全科学学报,2011,20(8):30-39.
[3]艾冠韬,邓院昌,舒凡.广州市机动车人行横道让行行为及影响因素分析[J]. 中国安全生产科学技术,2016,12(12):133-137.
[4]马万经,叶新晨,廖大彬,等.停车让行交叉口机动车接受间隙和拒绝间隙分布特征[J]. 中国公路学报,2015,28(4):86-93.
[5]Zhuang X L,Wu C X. Pedestrian Gestures Increase Driver Yielding at Uncontrolled Mid-block Road Crossings[J]. Accident Analysis & Prevention, 2014, 70: 235-244.
[6]Rosenbloom T, Nemrodov D, Eliyahu A B. Yielding Behavior of Israeli Drivers: Interaction of Age and Sex[J]. Perceptual and Motor Skills, 2006, 103(2): 387-390.
[7]Schroeder B J, Rouphail N M. Event-Based Modeling of Driver Yielding Behavior at Unsignalized Crosswalks[J]. Journal of Transportation Engineering, 2011, 137(7): 455-465.
[8]向红艳,张清泉,范文博.基于蒙特卡洛模拟的无信号行人过街安全度模型[J]. 交通运输系统工程与信息,2016,16(4):171-177.
[9]杨晓光,劳云腾,云美萍.无信号控制路段行人过街方式适用性研究[J]. 同济大学学报(自然科学版),2007,35(11):1466-1469,1496.
[10]杨晓芳,韩印,付强,等.无信号控制路段行人过街管理策略研究[J]. 计算机工程与应用,2009,45(9):204-206,226.
[11]赵靖,白玉,杨晓光.基于回归分析的右转通行能力行人自行车修正[J]. 公路交通科技,2012,29(2):120-126,153.
[12]赵靖,马万经,杨晓光.考虑下游交叉口的路段行人过街优化控制模型[J]. 同济大学学报(自然科学版),2013,42(10):1536-1542.
[13]Nicolas G, Meineri S, Eyssartier C. A Pedestrian′s Stare and Drivers′ Stopping Behavior: A Field Experiment at the Pedestrian Crossing[J]. Safety Science, 2015, 75: 87-89.
[14]Brosseau M, Zangenehpour S, Saunier N, et al. The Impact of Waiting Time and Other Factors on Dangerous Pedestrian Crossings and Violations at Signalized Intersections: A Case Study in Montreal[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2013, 21:159-172.
[15]Guo H, Gao Z, Yang X, et al. Modeling Pedestrian Violation Behavior at Signalized Crosswalks in China: A Hazards-Based Duration Approach[J].Traffic Injury Prevention, 2011, 12(1): 96-103.

PDF(1432 KB)

Accesses

Citation

Detail

段落导航
相关文章

/