基于手机信令数据的旅游交通出行网络特性

邓社军,宇泓儒,陆曹烨,刘冬梅,唐玉成,白桦

交通运输研究 ›› 2019, Vol. 5 ›› Issue (6) : 28-35.

PDF(1851 KB)
PDF(1851 KB)
交通运输研究 ›› 2019, Vol. 5 ›› Issue (6) : 28-35.
专题

基于手机信令数据的旅游交通出行网络特性

  • 邓社军,宇泓儒,陆曹烨,刘冬梅,唐玉成,白桦
作者信息 +

Characteristics of Travel Network Based on Mobile Signaling Data

  • Deng She-jun, Yu Hong-ru, Lu Cao-ye, Liu Dong-mei, Tang Yu-cheng and Bai Hua
Author information +
文章历史 +

摘要

为了合理开展面向区域城市群的旅游交通协同规划,以江浙沪皖地区的18个主要旅游城市为例,基于入境旅游者的手机信令数据构建了城市间的旅游出行网络,并运用节点结构指标和网络结构指标对其进行评价,定量分析了入境旅游客流在城市间的空间分布特征。研究结果表明:上海、杭州和南京等城市在区域旅游交通规划中起着重要的引领作用;连云港、徐州和盐城等城市需加强与核心城市之间构建高效的出行路径;城际间便捷的综合交通出行网络对于提升区域旅游的整体竞争力发挥着重要作用。

Abstract

In order to reasonably carry out coordinated planning of tourism transportation for regional urban agglomeration, 18 major tourism cities in Jiangsu Province and Anhui Province were taken as examples, and based on mobile signaling data of the inbound tourists, a travel network between cities was constructed and evaluated by node structure index and network structure index. The spatial distribution characteristics of inbound tourists flow among cities were quantitatively analyzed. The results show that cities such as Shanghai, Hangzhou and Nanjing play an important leading role in regional tourism and transportation planning; cities such as Lianyungang, Xuzhou, Yancheng need to strengthen the construction of efficient travel routes with the core cities; the convenient intercity comprehensive transportation network plays an important role in promoting the overall competitiveness of regional tourism.

关键词

交通网络 / 旅游交通 / 手机信令数据 / 空间分布 / 特征分析

Key words

transportation network / tourism transportation / mobile signaling data / spatial distribution / characteristics analysis

引用本文

导出引用
邓社军,宇泓儒,陆曹烨,刘冬梅,唐玉成,白桦. 基于手机信令数据的旅游交通出行网络特性[J]. 交通运输研究. 2019, 5(6): 28-35
Deng She-jun, Yu Hong-ru, Lu Cao-ye, Liu Dong-mei, Tang Yu-cheng and Bai Hua. Characteristics of Travel Network Based on Mobile Signaling Data[J]. Transport Research. 2019, 5(6): 28-35

参考文献

[1]Gundlegård D, Rydergren C, Breyer N, et al. Travel Demand Estimation and Network Assignment Based on Cellular Network Data[J]. Computer Communications, 2016, 95: 29-42.
[2]Roklb S A. Ahsanul K, Tony Z Q, et al. Origin-Destination Trip Estimation from Anonymous Cell Phone and Foursquare Data[R]. Washington DC: TRB 94th Annual Meeting, 2015.
[3]Francesco C, Mi D, Giusy D L, et al. Understanding Individual Mobility Patterns from Urban Sensing Data: A Mobile Phone Trace Example[J]. Transportation Research Part C: Emerging Technologies, 2013, 26: 301-313.
[4]Shahadat I, Charisma F C, Wang P, et al. Development of Origin-Destination Matrices Using Mobile Phone Call Data[J]. Transportation Research Part C: Emerging Technologies, 2014, 40: 63-74.
[5]González M C, Hidalgo C A, Barabási A L. Understanding Individual Human Mobility Patterns[J]. Nature, 2008, 453:779-782.
[6]Ren Y, Ercsey-Ravasz M, Wang P, et al. Predicting Commuter Flows in Spatial Networks Using a Radiation Model Based on Temporal Ranges[J]. Nature Communications, 2014, 5: 779-803.
[7]Çolak S, Lima A, Gonzalez M C. Understanding Congested Travel in Urban Areas[J]. Nature Communications, 2016, 7:1-8.
[8]冉斌. 手机数据在交通调查和交通规划中的应用[J]. 城市交通,2013,11(1):72-81,32
[9]杨飞. 基于手机定位的交通OD数据获取技术[J]. 系统工程,2007(1):42-48.
[10]吴亦政. 基于手机定位信息和出行调查的动态OD获取方法[D]. 北京:北京交通大学,2014.
[11]曹仲,李付琛,杨皓斐. 基于手机信令数据的城市区域间交通流分析及可视化[J]. 计算机与现代化,2018(3):116-121,126.
[12]李祖芬,于雷,高永,等. 基于手机信令定位数据的居民出行时空分布特征提取方法[J]. 交通运输研究,2016,2(1):51-57.
[13]于泉,孙瑶. 基于手机信令数据的高速公路服务区客流特征研究[J]. 交通运输研究,2019,5(2):60-66.
[14]钮心毅,丁亮,宋小冬. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊,2014(6):61-67.
[15]丁亮,钮心毅,宋小冬. 利用手机数据识别上海中心城的通勤区[J]. 城市规划,2015,39(9):100-106.
[16]扈中伟,邓小勇,郭继孚,等. 基于手机定位数据的居民出行需求特征分析[C]//第八届中国智能交通年会论文集. 合肥:中国智能交通协会,2013.
[17]贾会林,杨勇. 基于手机信令的人口出行分布调查[J]. 现代电信科技,2013(9):35-38 ,44.
[18]倪玲霖,张帅超,陈喜群. 基于手机信令数据的居民出行空间效应[J]. 浙江大学学报(工学版),2017,51(5):887-895.

基金

综合交通出行及旅游服务应用示范工程项目(发改办高技(2017)461号);教育部人文社会科学研究规划基金项目(19YJAZH011);智能交通技术交通运输行业重点实验室开放课题(F262019016);江苏省交通厅运输厅科技项目(KY2018049)

PDF(1851 KB)

Accesses

Citation

Detail

段落导航
相关文章

/