为充分探索船舶自动识别系统大数据在统计决策和安全监管方面的应用价值,系统性地提出了船舶AIS大数据资源管理与分析应用架构。首先,根据船舶AIS大数据特点,设计了船舶AIS大数据处理流程和存储策略,为后续高效计算提供支撑;然后,提出并实现了基于船舶AIS大数据的船舶轨迹重建算法、断面船舶流量统计算法、船舶进出港区识别算法、船舶航行状态分析算法四种基础算法;最后,基于上述计算方法,将船舶AIS大数据应用于断面流量统计、船舶规范使用船载AIS设备行为监控以及船舶规范执行进出港报告情况监控等场景,结果表明船舶AIS数据在统计决策和安全监管方面具有一定的应用价值。
Abstract
In order to fully explore the value of ship Automatic Identification System (AIS) big data in terms of statistical analysis and maritime supervision, the ship AIS big data management, analysis and application architecture was systematically proposed. Firstly, according to the characteristics of ship AIS big data, the processing flow and storage strategy of ship AIS big data were designed in order to support the following high efficient computation. Secondly, four basic algorithms based on ship AIS big data were proposed and realized, including ship trajectory reconstruction, section ship flow statistics, identification of ship entering and leaving the port, and ship navigation status judgement. Finally, on the basis of the four basic algorithms, ship AIS big data was applied to several scenes, including the section ship flow statistics, behavior supervision of ship normally using ship AIS equipment, behavior supervision of ship reporting its entering and leaving the port and so on. The application results show that ship AIS big data is valuable in terms of statistical analysis and maritime supervision to some extent.
关键词
船舶自动识别系统 /
大数据 /
架构设计 /
船舶流量统计 /
海事监管
Key words
ship Automatic Identification System (AIS) /
big data /
architecture design /
ship flow statistics /
statistical analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]云中. 中国建成全球最大AIS岸基网络系统[J]. 中国远洋航务,2011(7):18.
[2]Wu L, Xu Y J, Wang Q, et al. Mapping Global Shipping Density from AIS Data[J]. Journal of Navigation, 2016, 70(1): 67-81.
[3]李永攀,刘正江,郑中义. 基于时空密度的船载AIS数据聚类分析方法研究[J]. 重庆交通大学学报(自然科学版),2018,37(10):117-122.
[4]Altan Y C, Otay E N. Maritime Traffic Analysis of the Strait of Istanbul Based on AIS Data[J]. The Journal of Navigation, 2017, 70(6): 1367-1382.
[5]Pallotta G, Vespe M, Bryan K. Vessel Pattern Knowledge Discovery from AIS Data: A Framework for Anomaly Detection and Route Prediction[J]. Entropy, 2013, 15(6): 2218-2245.
[6]Lei P R, Tsai T H, Wen Y T, et al. A Framework for Discovering Maritime Traffic Conflict from AIS Network[C]// The 19th Asia-Pacific Network Operations & Management Symposium. Seoul: IEEE, 2017.
[7]Dobrkovic A, Iacob M E, Hillegersberg J V. Maritime Pattern Extraction from AIS Data Using a Genetic Algorithm[C]// The 3rd IEEE International Conference on Data Science & Advanced Analytics. Montreal: IEEE, 2016.
[8]Zhang W B, Kopca C, Tang J J, et al. A Systematic Approach for Collision Risk Analysis Based on AIS Data[J]. The Journal of Navigation, 2017, 70(5): 1117-1132.
[9]熊勇,瞿小豪,郭俊维,等. 基于AIS数据的渡轮异常运动模式监测[J].中国安全科学学报,2016,26(1):100-103.
[10]Tu E, Zhang G, Rachmawati L, et al. Exploiting AIS Data for Intelligent Maritime Navigation: A Comprehensive Survey from Data to Methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(5): 1559-1582.
[11]Mazzarella F, Vespe M, Alessandrini A, et al. A Novel Anomaly Detection Approach to Identify Intentional AIS On-off Switching[J]. Expert Systems with Applications,2017, 78: 110-123.
[12]Longépé N, Hajduch G, Ardianto R, et al. Completing Fishing Monitoring with Spaceborne Vessel Detection System(VDS) and Automatic Identification System (AIS) to Assess Illegal Fishing in Indonesia[J]. Marine Pollution Bulletin, 2017, 131(Pt B): 33-39.
[13]Deter J, Lozupone X, Inacio A, et al. Boat Anchoring Pressure on Coastal Seabed: Quantification and Bias Estimation Using AIS Data[J]. Marine Pollution Bulletin, 2017, 123(1-2): 175-181.
[14]朱倩茹,廖程浩,王龙,等. 基于AIS数据的精细化船舶排放清单方法[J]. 中国环境科学,2017,37(12):4493-4500.
[15]Chen D S, Wang X T, Nelson P, et al. Ship Emission Inventory and Its Impact on the PM 2.5 Air Pollution in Qingdao Port, North China[J]. Atmospheric Environment, 2017, 166:351-361.