为了解决道路交通风险防控的闭环管理体系建设问题,建立了交通大数据智能应用系统工程的逻辑框架,阐述了交通大数据融合的模式和方法,运用风险认知、风险评估、风险管理和风险沟通理论构建了道路交通风险主动防控体系,最后应用道路交通风险主动防控体系的主动防控即时风险沟通服务对贵州省高速公路网进行事故预防,结果表明采用主动防控即时风险沟通服务对于减少高速公路事故量具有显著效果。
Abstract
In order to solve the closed-loop management system construction problem of road traffic risk prevention and control, a logical framework of transportation big data intelligent system engineering was established, the mode and method of transportation big data fusion and governance were expounded, and an active prevention and control system of road traffic risk was constructed based on the theories of risk cognition, risk assessment, risk management and risk communication. Finally, the real-time risk communication service of Active Prevention and Control of Road Traffic Risk was developed and applied to real road risk prevention and control practice throughout the highway network of Guizhou Province, which was proved to have significant effect on reducing the number of highway accidents.
关键词
数据智能 /
风险辨识 /
风险评级 /
风险沟通 /
主动防控
Key words
data intelligence /
risk identification /
risk assess /
risk communication /
risk active prevention and control
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 傅志寰,孙永福. 交通强国战略研究[M]. 第2 卷. 北京:人民交通出版社,2019:260-262.
[2] 李开复,王咏刚. 人工智能[M]. 北京:文化发展出版社,2017:91-92.
[3] 谭跃进,陈英武,罗鹏程. 系统工程原理[M]. 北京:科学出版社,2010:7.
[4] Anuoluwapo A, Lukumon O, Juan M D, et al. Big Data Platform for Health and Safety Accident Prediction[J]. World Journal of Science, Technology and Sustainable Development,2019, 16(1): 2-21.
[5] Fotios Z, Grigorios K, Sotiris K, et al. A Review of Machine Learning and IoT in Smart Transportation[J]. Future Internet, 2019, 11(4): 1-23.
[6] Subramanian A, Bhargavi R. A Survey on Driving Behavior Analysis in Usage Based Insurance Using Dig Data[J].Journal of Big Data, 2019, 6(1): 1-21.
[7] Rehrl K, Brunauer R, Gröchenig S. Collecting Floating Car Data with Smart Phones: Results from a Field Trial in Austria[J]. Journal of Location Based Services, 2016,10 (1): 16-30.
[8] Dozza M, González N P. Recognizing Safety Critical Events: Can Automatic Video Processing Improve Naturalistic Data Analyses?[J]. Accident Analysis & Prevention,2013, 60: 298-304.
[9] 蔡阳,贺锦江. 机动车道路交通事故的大数据模型和分析[J]. 统计与管理,2016(10):32-34.
[10] 傅灵建. 大数据背景下交通事故多发路段识别与改造研究[J]. 统计与管理,2017(3):137-138.
[11] 张惠荣,吉静. 基于大数据的道路交通黑点研判技术与应用[J]. 中国交通信息化,2018(7):130-132.
[12] 李然. 高速公路运营安全风险评价研究[J]. 交通运输研究,2019,5(1):48-56.
[13] 陆建,程泽阳. 道路交通网络安全风险辨识研究进展[J]. 东南大学学报(自然科学版),2019,49(2):404-412.
[14] 付存勇,王俊骅. 基于监控数据的高速公路实时事故风险模型[J]. 交通信息与安全, 2017,35(5):11-17.
[15] 陆化普. 智能交通系统概论[M]. 1 版. 北京:中国铁道出版社,2004:126.
[16] 宋效红. 基于信息技术应用创新的驾驶者交通风险实时预警研究[J]. 物流技术,2014,33(5):424-426.
[17] 谢小非,郑蕊. 风险沟通与公众理性[J]. 心理科学进展,2003,11(4):375-381.