为研究夜间弹性公交的可行性及乘客群体对其运营方案的选择行为,首先使用叙述性偏好(Stated Preference, SP)调查法对夜间弹性公交进行市场潜力调查,通过设定夜间常规公交与夜间弹性公交的对比方案及夜间弹性公交的运营参数对比方案,围绕出行费用、车辆绕行时间、步行至站台时间3 个影响因素,对乘客进行选择偏好分析。然后,运用非集计模型效用理论,校正了乘客选择弹性公交的概率模型。最后,对绕行时间价值及步行时间价值进行计算,针对不同费用情况下的夜间弹性公交分别进行了最优偏移系数讨论及计算。结果表明,夜间弹性公交在参数设置恰当时具备良好的市场潜力,乘客选择率高达82.3%;乘客更倾向接受增加乘车时的绕行时间、减少步行时间的运营方案;公交的偏移系数应随着票价的改变进行调整。
Abstract
In order to study the feasibility of night flexible bus and passengers′ choice to the operating plan of night flexible bus, the Stated Preference (SP) Survey method was used to investigate the market potential of night flexible bus. By setting the comparison scheme between regular bus and flexible bus at night and the comparison plan of operating parameters for night flexible bus, the passengers were selected for preference analysis based on three factors: bus fare, bus detour time and walking time to bus stop. Then, based on the utility theory of the Disaggregate Model, the probability model of passengers choosing flexible bus was corrected. Lately, the detour time value and the walking time value were calculated and the optimal offset coefficient for the night flexible bus was discussed and calculated under different cost condition. The results show that the night flexible bus with proper parameters has good market potential and the passenger selection rate is up to 82.3%. Passengers are more inclined to accept the operating plan to increase the bus detour time and reduce the walking time. Meanwhile, the offset coefficient of the night flexible bus should be adjusted as the fare changes.
关键词
夜间弹性公交 /
SP调查 /
市场潜力 /
非集计模型 /
出行选择行为
Key words
night flexible bus /
Stated Preference(SP) Survey /
market potential /
Disaggregate Model /
travel choice behavior
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 高永峰,四兵锋. 基于需求弹性的城市公交票价优化方法及实证分析[J]. 交通运输系统工程与信息,2019,19(3):163-168.
[2] 詹静. 低需求区域发展需求响应式公交运营模式及适应性研究[D]. 重庆:重庆交通大学,2016.
[3] Stanciu V D, Dobre C, Cristea V. Context-Based Service for Intelligent Public Transportation Systems[J]. International Journal of Adaptive and Innovative Systems, 2015, 2(2): 180.
[4] 魏天娇,周磊山. 基于关键客流密度选择支路公交运营模式的方法[J]. 交通标准化,2012(12):43-47.
[5] Malucelli F, Nonato M, Pallottino S. Demand Adaptive Systems: Some Proposals on Flexible Transit1[M]. London: Palgrave Macmillan UK, 1999.
[6] Quadrifoglio L, Dessouky M M, Palmer K. An Insertion Heuristic for Scheduling Mobility Allowance Shuttle Transit(MAST) Services[J]. Journal of Scheduling, 2007, 10(1): 25-40.
[7] Nourbakhsh S M, Ouyang Y. A Structured Flexible Transit System for Low Demand Areas[J]. Transportation Research Part B: Methodological, 2012, 46(1): 204-216.
[8] Edwards D, Watkins K. Comparing Fixed-Route and Demand-Responsive Feeder Transit Systems in Real-World Settings[J]. Transportation Research Record Journal of the Transportation Research Board, 2013, 2352(-1): 128-135.
[9] 高煦明. 固定站点需求响应式接驳公交调度模型研究[D]. 南京:东南大学,2015.
[10] Mulley C, Nelson J D. Flexible Transport Services: A New Market Opportunity for Public Transport[J]. Research in Transportation Economics, 2009, 25(1): 39-45.
[11] 刘梦瑶,贺玉龙,孙小端. 基于MNL模型的历史街区出行方式研究[J]. 交通运输研究, 2017,3(5):8-13.
[12] 马鸣谷. 基于SP 调查的新建停车换乘对游客出行方式选择的影响分析[D]. 重庆:重庆交通大学,2015.
[13] 王方,陈金川,陈艳艳. 交通SP调查的均匀设计方法[J]. 城市交通,2005,3(3):69-72.
[14] 巴兴强,肖雷. 基于SP 调查的地铁与常规公交票价关系对客流的影响研究[J]. 重庆理工大学学报(自然科学版),2018,32(7):144-150.
[15] 李世民,安栓庄,张薇,等. 基于非集计模型的出行时间价值影响因素分析[J]. 交通标准化,2011(14):136-138.
[16] 刘跃军,顾涛,周凌,等. 基于居民出行时间价值的SP调查设计[J]. 城市交通,2018,16(2):76-82.
基金
住建部2017 科技计划项目(2017-K2-004)