针对传统交通系统中短期客流预测精度低的问题,考虑城市交通站点客流数据在横纵向时间序列的规律性,基于卡尔曼滤波算法和K近邻(K-Nearest Neighbor, ANN)算法,分别根据当日数据和历史数据对客流量进行预测,然后利用权重系数方程对两个预测值加以融合,从而构建基于融合模型动态权值的短期客流预测方法。以某城市的某公交站点客流数据为研究对象,对所建融合模型短期客流预测的准确性和适用性加以验证。结果表明,新建模型、单一的卡尔曼滤波模型和KNN模型的平均相对误差分别为3.6%, 9.0%和7.7%,可见新建模型能更好地拟合客流变化趋势且评价效率更高。
Abstract
In order to solve the problem of low accuracy of short-term passenger flow prediction in traditional transportation system, considering the regularity of transverse and longitudinal time series for passenger flow data at urban traffic stations, the short-term passenger flow was predicted according to current data and historical data respectively based on Kalman filter algorithm and K-Nearest Neighbor(KNN) algorithm respectively. By using the dynamic weights coefficient equation to fuse the two predicting values of the Kalman filter algorithm and KNN algorithm, a new short-term passenger flow prediction method based on the fusion model was constructed. Taking the passenger flow data of a bus station in one city as an example, the accuracy and applicability of the proposed fusion model for short-term passenger flow prediction was verified. The results show that the average relative error of the new model, the single Kalman filter model and KNN model is 3.6%, 9.0% and 7.7%. It means that the new model can better fit the trend of passenger flow and has higher efficiency.
关键词
短期客流预测 /
融合模型 /
智能交通 /
卡尔曼滤波算法 /
KNN算法
Key words
short-term passenger flow prediction /
fusion model /
intelligent transportation /
Kalman filter algorithm /
K-Nearest Neighbor(KNN) algorithm
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 蒋婷婷. 基于鸡群算法的小波神经网络短时交通流预测研究[D]. 成都:西南交通大学,2018.
[2] 张多. 基于支持向量回归机和多变量相空间重构的短时交通流预测[D]. 重庆:重庆交通大学,2014.
[3] Mei D, Xu E, Yan Q. Short-term Traffic Flow Prediction Method Based on Grey Adaptive Particle Swarm Support Vector Machine[C]// Proceedings of 2016 2nd IEEE Internationl Conference on Computer & Communications (ICCC). Chengdu: IEEE, 2016: 1294-1298.
[4] Yang H J, Hu X. Wavelet Neural Network with Improved Genetic Algorithm for Traffic Flow Time Series Prediction[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(19): 8103-8110.
[5] Jiang X S, Zhang L, Chen X Q. Short-term Forecasting of High-Speed Rail Demand: A Hybrid Approach Combining Ensemble Empirical Mode Decomposition and Gray Support Vector Machine with Real-World Applications in China[J]. Transportation Research Part C: Emerging Technologies, 2014, 44(4): 110-127.
[6] 罗向龙,焦琴琴,牛力瑶,等. 基于深度学习的短时交通流预测[J]. 计算机应用研究,2017,34(1):91-93.
[7] 高慧,赵建玉,贾磊. 短时交通流预测方法综述[J]. 济南大学学报(自然科学版),2008(1):88-94.
[8] Van Hinsbergen C P I, Van Lint J W C, Van Zuylen H J. Bayesian Committee of Neural Networks to Predict Travel Times with Confidence Intervals[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(5): 498-509.
[9] Polson N, Sokolov V. Deep Learning Predictors for Traffic Flows[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 1-17.
[10] Cong Y L, Wang J W, Li X L. Traffic Flow Forecasting by A Least Squares Support Vector Machine with a Fruit Fly Optimization Algorithm[J]. Procedia Engineering, 2016, 137: 59-68.
[11] 邹艾娟,尤子菻,吴丹. 基于ARIMA模型的高速公路交通量短期预测[J]. 国防交通工程与技术,2015,13(6):34-36.
[12] 刘亚迪. 基于开方变换和偏最小二乘的交通流预测优化[D]. 天津:天津大学,2016.
[13] 郭建校. 改进的高维非线性偏最小二乘回归模型及应用[M]. 北京:中国物资出版社,2010.
[14] 唐小我,马永开,曾勇,等. 现代组合预测和组合投资决策方法及应用[M]. 北京:科学出版社,2003.
[15] Marcot B G, Penman T D. Advances in Bayesian Network Modelling: Integration of Modelling Technologies[J]. Environmental Modelling & Software, 2018, 111: 386-393.
基金
国家自然科学基金项目(71801153;71801149)