为优化沥青路面就地热再生施工方案的决策过程,提出一种施工方案多目标优化方法。在EZStrobe 软件上实现复拌再生法(A)、复拌加铺法(B)两种施工工艺的可视化仿真,以量化不同工况下沥青路面就地热再生施工过程中的环境影响。确定施工环境影响、施工成本、施工质量的目标函数并构建施工方案多目标优化模型,通过NSGA-Ⅱ算法求解多目标优化问题,获得Pareto最优解。研究发现:(1)随着施工成本的增加,施工环境影响与施工质量不断提高,而施工环境影响与施工质量之间并无明显的线性关系;(2)优化后的自卸卡车具有更好的表现,且对多目标优化结果影响较小,而加热机数量对其的影响较大;(3)随着压实次数增多,决策变量频数呈现断层式下降;(4)施工机械优化效果在B施工工艺上表现更加明显。研究表明:以极值为目标时,B施工工艺在环境影响和施工质量两个目标上表现较优,而在成本上无优势;以均值为目标时,B施工工艺具有更好的环境效益与经济效益,但其施工可靠性不如A施工工艺。
Abstract
In order to optimize the decision-making process of the construction plan of hot in-place recycling(HIR), a multi-objective optimization method was proposed. EZStrobe was used as the discrete event simulation software to simulate the two different HIR methods, remixing generation method (A for short) and repaving generation method (B for short), and the environmental impact of hot in-place re- cycling′ s construction process during different working conditions was quantified. A multi- objective optimization model was established with the decision variables of environmental impact, cost and construction quality. The NSGA-Ⅱ algorithm was employed to solve the multi- objective optimization problem, which could obtain Pareto optimal solutions. It is found that: (1) with the increase of construction cost, the construction environment impact and construction quality are continuously improved, and there is no obvious linear relationship between construction environment impact and construction quality; (2) dump trucks with optimized construction obtain better performance and make less impacts on multi-objective optimization results, whereas the number of heating machines makes a greater impact on it; (3) as the compaction time increases, the frequency of decision variables decreases in a fault-like manner; (4) construction machinery′s effect is more obvious on B. It is proved that: when the extreme value is targeted at, B performs better on environmental impact and construction quality, but has no advantage in cost; when the average value is targeted at, B achieves better environmental and economic benefits, but its construction reliability is not as good as A.
关键词
就地热再生 /
施工方案 /
多目标优化 /
离散事件仿真 /
Pareto最优解
Key words
HIR(Hot In-Place Recycling) /
construction plan /
multi-objective optimization /
discrete event simulation /
Pareto Optimal Solution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 江燕青. 沥青路面就地热再生技术的研究[D]. 西安:长安大学,2006.
[2] 刘金玲. 沥青及沥青混合料就地热再生工艺研究[D]. 大连:大连理工大学,2009.
[3] 高放. 基于LCA 的沥青路面建设期能耗和排放量化分析研究[D]. 重庆:重庆交通大学,2016.
[4] YU B, LU Q. Estimation of Albedo Effect in Pavement Life Cycle Assessment[J]. Journal of Cleaner Production, 2014, 64(2): 306-309.
[5] 章毅,刘伟杰. 建设期沥青混凝土路面能耗与碳排放分析[J]. 公路,2015(1):100-107.
[6] 蔺瑞玉,沙爱民,杨发林,等. 沥青路面温室气体排放评价方法[J]. 长安大学学报(自然科学版),2014,34(6):19-26.
[7] IMRAN H, HASAN O. Performance Characterization of Hot In- Place Recycled Asphalt Mixtures[J]. Journal of Transportation Engineering, 2014, 140(8): 1-9.
[8] ALI H, MCCARTHY L M, WELKER A. Performance of Hot In- Place Recycled Superpave Mixtures in Florida[J]. Construction and Building Materials, 2013, 49(6): 618-626.
[9] 朱达禄. 沥青路面施工质量控制[J]. 交通世界,2018(18):28-29.
[10] 李超. 市政道路沥青路面热再生施工技术的应用[J]. 低碳世界,2017(35):262-263.
[11] 高宏波. 沥青混凝土就地热再生方式与成本分析[D]. 重庆:重庆交通大学,2012.
[12] 刘强. 沥青路面就地热再生环境影响评价[J]. 山东交通科技,2018(1):39-42.
[13] 徐磊. 基于遗传算法的多目标优化问题的研究与应用[D]. 长沙:中南大学,2007.
[14] JING Y Y, BAI H, WANG J J, et al. Life Cycle Assessment of a Solar Combined Cooling Heating and Power System in Different Operation Strategies[J]. Applied Energy, 2012, 92(2): 843-853.
[15] WANG J, ZHAI Z Q J, ZHANG C F, et al. Environmental Impact Analysis of BCHP System in Different Climate Zones in China[J]. Energy, 2010, 35(10): 4208-4216.
[16] 赵丹. 基于蚁群算法的建筑工程项目多目标优化研究[D]. 邯郸:河北工程大学,2016.
[17] 奚晓芳. 工程项目多目标优化问题研究[D]. 天津:河北工业大学,2013.
[18] 张清平. 沥青路面现场热再生技术研究[D]. 长沙:长沙理工大学,2011.
[19] 刘振兴. 海南省现场热再生沥青路面施工工艺及质量控制研究[D]. 长沙:长沙理工大学,2009.
[20] ARUNACHALAM A, NAGARAJAN N P, MOHAN V, et al. Resolving Team Selection in Agile Development Using NSGA-Ⅱ Algorithm[J]. CSI Transactions on ICT, 2016, 4(2-4): 83-86.
[21] BABAEI M, MOLLAYI M. Multi-Objective Optimization of Reinforced Concrete Frames Using NSGA-ⅡAlgorithm[J]. Engineering Structures and Technologies, 2016, 8(4): 157-164.
[22] DEVLIN S M. Potential-Based Reward Shaping for Knowledge-Based, Multi-Agent Reinforcement Learning[D]. York: University of York, 2013.
[23] 李晓波. 沥青路面就地热再生施工工艺及质量控制[J]. 山西建筑,2018,44(6):130-131.
[24] 李明. 公路工程路基路面压实施工技术研究[J]. 建材与装饰,2018(29):271.
基金
国家自然科学基金项目(51408114);江苏省自然科学基金项目(BK20171359)