干路绿化带特性对驾驶人视觉影响评价研究

宋婉璐,王奎元,谭婷,盛玉刚,韩宝睿

交通运输研究 ›› 2019, Vol. 5 ›› Issue (1) : 57-64.

PDF(1749 KB)
PDF(1749 KB)
交通运输研究 ›› 2019, Vol. 5 ›› Issue (1) : 57-64.
信息化

干路绿化带特性对驾驶人视觉影响评价研究

  • 宋婉璐,王奎元,谭婷,盛玉刚,韩宝睿
作者信息 +

Assessment on Visual Impact of Urban Arterial Green Belt on Drivers

  • SON Wan-lu, WANG Kui-yuan, TAN Ting, SHENG Yu-gang and HAN Bao-rui
Author information +
文章历史 +

摘要

为量化研究城市干路绿化带对驾驶人的视觉影响程度,首先利用对偶比较法选取干路绿化带样本,并基于德尔菲法筛选绿化带的高度、冠幅等五种影响驾驶行为的指标,采用SBE法对样本路段进行相应指标的视觉刺激评价并建立了单一车速下视觉影响度模型。为验证模型的可靠性,使用眼动仪进行实车上路试验,根据五种指标将视觉场景划分兴趣区,分析兴趣区内驾驶人注视点的集中度,并与模型得分进行拟合,发现拟合度较高,说明模型可靠。然后,采用驾驶模拟舱获得不同车速下的眼动数据,构造了可变车速下视觉影响度优化评价模型。最后,基于优化模型计算视觉环境舒适的绿化带影响度分值,确定了视觉舒适评分区间。研究结果表明,干路绿化带对驾驶人视觉存在一定影响,应当合理调整绿化带各项指标,以保证其分值位于舒适区间,从而减小绿化带对驾驶人视觉的不良影响。

Abstract

In order to quantify the visual impact of arterial green belts on drivers, firstly several samples of arterial belts were selected by LCJ(Law of Comparative Judgement) method. Delphi method was used to filter five indicators which impact driving behavior, including tree height, crown width, and so on. The visual impact model (under same speed) was built based on the simulation evaluation of the sample arterials by using SBE(Scenic Beauty Estimation) method. In order to verify the reliability of the model, eye trackers were adopted in field experiments. According to the influencing factors of green belt, visual scenes were divided into different AOI(Area of Interest). The concentration of driver's eye fixation point in each AOI was obtained and fitted with the score of the model. It was found that the fitness was high, which proved the model was reliable. Then, the corresponding eye movement data under different speeds was obtained by using driving simulator in VR(Virtual Reality) experiments, so as to build an optimized model for variable vehicle speeds. Finally, the comfortable visual interval was determined based on the optimized model. The results show that the green belt of arterial has certain visual impact on drivers, and the factors of green belt should be modified to ensure that the impact score is in the comfort interval, so as to reduce the bad visual impact on drivers.

关键词

交通安全 / 城市干路绿化带 / 视觉影响评价 / 美景度评价 / 注视点

Key words

traffic safety / green belts of urban arterial / visual impact assessment / SBE(Scenic Beauty Estimation) / fixation point

引用本文

导出引用
宋婉璐,王奎元,谭婷,盛玉刚,韩宝睿. 干路绿化带特性对驾驶人视觉影响评价研究[J]. 交通运输研究. 2019, 5(1): 57-64
SON Wan-lu, WANG Kui-yuan, TAN Ting, SHENG Yu-gang and HAN Bao-rui. Assessment on Visual Impact of Urban Arterial Green Belt on Drivers[J]. Transport Research. 2019, 5(1): 57-64

参考文献

[1] LU B. Research on Construction of City Road Greening[J]. Applied Mechanics and Materials, 2012(4), 253-255. [2] BOŽENA Š. Road Vegetation in Central Europe: An Examplefrom the Czech Republic[J]. Biologia(Bratislava), 2008, 63(6): 1085-1088. [3] MOK J H, LANDPHAIR H C, NADERI J R. Landscape Improvement Impacts on Roadside Safety in Texas[J]. Landscape & Urban Planning, 2006, 78(3): 263-274. [4] 周昊,程建川,薛林钢,等. 城市道路分隔绿化带对交通安全影响的分析[J]. 城市道桥与防洪,2014(12):18-23. [5] 王宏凯. 基于交通安全的公路景观设计的研究[D]. 西安:长安大学,2016. [6] 田青. 城市道路绿化与交通安全关系研究[D]. 南京:南京林业大学,2012. [7] 王艳想,张琳,李帅,等. 基于BIB-LCJ 和SD 法的郑州园博园城市展园景观研究[J]. 河南农业大学学报,2018,52(3):52-56. [8] 刘伟涛,顾鸿,李春洪. 基于德尔菲法的专家评估方法[J]. 计算机工程,2011(S1):189-191,204. [9] ZHANG J, SONG L, YANG Z. Evaluating Plant Landscape in Shenyang City Park by Applying SBE Methods[C]// 2016 International Conference on Smart City & Sys- tems Engineering. Changsha: IEEE, 2016: 44-48. [10] WILRICH P T. Critical Values of Mandel Shandk, the Grubbs and the Cochran test statistic[J]. Advances in Statistical Analysis, 2013, 97(1): 1-10. [11] 张丽川,李宏汀,葛列众. Tobii 眼动仪在人机交互中的应用[J]. 人类工效学,2009(2):67-69,39. [12] NYSTRÖM M, ANERSSON R, HOLMQVIST K, et al. The Influence of Calibration Method and Eye Physiology on Eye Tracker Data Quality[J]. Behavior Research Methods, 2013, 45(1): 272-288. [13] 胡夫,孙健,黄一哲,等. 并发任务对驾驶员驾驶行为的影响[J]. 交通运输研究,2015,1(6):45-50. [14] JIN X., LI Z C, ZHANG J J, et al. Research on Pupil Center Localization in Eye Gaze Tracking System[C]// IEEE 2018 37th Chinese Control Conference(CCC). Wuhan: IEEE, 2018: 3211-3215. [15] KANG M W, MOMTAZ S U. Assessment of Driver Compliance on Roadside Safety Signs with Auditory Warning Sounds Generated from Pavement Surface—a Driving Simulator Study[J]. Journal of Traffic and Transactions Engineering (English Edition), 2018, 5(1): 1-13. [16] 施卢丹. 高速公路特长隧道驾驶人眼动注视特性研究[D]. 西安:长安大学,2011. [17] 李南初. 基于驾驶模拟试验的景观因素对驾驶行为的影响研究[D]. 成都:西南交通大学,2017. [18] MORGANTE J D, ZOLFAGHARI R, JOHNSON S P. A Critical Test of Temporal and Spatial Accuracy of the Tobii T60XL Eye Tracker[J]. Infancy, 2012, 17(1): 9-32. [19] HIGGS B., Abbas M. Experimental Design for a Psychophysiological Driving Simulator Study[C]// IEEE 17th International Conference on Intelligent Transportation Systems. Qingdao: IEEE, 2014: 4-5. [20] 中华人民共和国住房和城乡建设部. 城市道路工程设计规范:CJJ 37—2012[S]. 北京:中国建筑工业出版社,2012.

PDF(1749 KB)

Accesses

Citation

Detail

段落导航
相关文章

/