摘要
为准确测度丝绸之路经济带沿线部分地区物流业效率,考虑实际情况,选取碳排放为物流业非期望产出,在此基础上,运用考虑非期望产出的基于松弛度模型(Slack Based Model, SBM),对2010—2017年丝绸之路经济带沿线我国西北五省区物流业效率进行测算。然后,利用Malmquist指数,刻画了物流业全要素生产率的时空演化特征。最后,根据分析结果,提出了提升丝绸之路经济带沿线部分地区物流业效率的可行性建议。研究结果表明:不考虑碳排放约束的物流业效率显著高于考虑碳排放约束的效率;丝绸之路经济带沿线我国西北五省区物流业效率总体偏低,有较大提升空间;技术进步变动指数在研究期间处于下降状态,而技术效率变动指数呈上升趋势,技术效率的提升推动了物流业效率的提升;从年度变化看,我国西北五省区物流业效率存在明显差异。
Abstract
In order to accurately measure the efficiency of logistics industry in some areas along the Silk Road Economic Belt, considering the actual situation, carbon emission was selected as the undesired output of logistics industry. Then the SBM (Slack Based Model) model considering undesired output was used to calculate the efficiency of logistics industry in five provinces and areas in Northwest China along the Silk Road Economic Belt during 2010 to 2017. Secondly, Malmquist index was applied to characterize the spatial and temporal evolution of total factor productivity of the logistics industry. Finally, according to the analysis results, the feasible suggestions to improve the efficiency of logistics industry in some areas along the Silk Road Economic Belt were proposed. The results showed that the efficiency of the logistics industry without considering carbon emission constraint was significantly higher than the efficiency of those considering carbon emission constraint; the efficiencies of the logistics industry in five provinces and areas in Northwest China along the Silk Road Economic Belt were generally low, and there was much room for improvement; during the research period, the technical progress change index declined, while the technical efficiency change index showed an upward trend and the technical efficiency improvement promoted the efficiency of the logistics industry; according to the annual change, there were significant differences in the efficiencies of logistics industry in the five provinces.
关键词
丝绸之路经济带 /
碳排放 /
基于松弛度模型 /
Malmquist指数 /
非期望产出
Key words
the Silk Road Economic Belt /
carbon emission /
SBM(Slack Based Model) /
Malmquist index /
undesired output
侯耀文,朱昌锋.
碳排放约束下丝绸之路经济带沿线我国西北五省区物流业效率研究[J]. 交通运输研究. 2019, 5(1): 24-31
HOU Yao-wen and ZHU Chang-feng.
Efficiency of Logistics Industry in Five Provinces and Areas in Northwest China along the Silk Road Economic Belt under Carbon Emission Constraint[J]. Transport Research. 2019, 5(1): 24-31
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 范月娇,王健. 我国物流通道的生产服务效率研究——基于SFA面板数据模型的实证研究[J]. 云南财经大学学报,2016(2):22-36.
[2] 余泳泽,武鹏. 我国物流产业效率及其影响因素的实证研究[J]. 产业经济研究,2010(1):65-71.
[3] 于丽静,王海峰,姜永强. 基于SFA的山东省区域物流效率及影响因素分析[J]. 物流工程与管理,2017,39(2):22-36.
[4] 倪超军,李俊凤. 供给侧改革视角下我国物流业的技术效率评价——基于生产前沿模型和收敛的实证[J]. 工业技术经济,2016,35(12):115-122.
[5] 韩剑尘,夏涛. 物流企业全要素生产率的时空异质性[J]. 科技管理研究,2016,36(13):215-220,226.
[6] 张志伟,苑希港. 基于DEA-DFM模型的我国三大区域物流相对有效性评价[J]. 物流技术,2015,34(7):185-189.
[7] 马越越,王维国. 异质性生产技术下中国区域物流产业全要素生产率[J]. 系统工程,2015,33(10):63-72.
[8] 王育红,刘琪. 基于Super-SBM模型的长江经济带物流效率测度研究[J]. 华东经济管理, 2017,31(5):72-77.
[9] 陈洁. 碳强度约束下的区域物流产业效率测算——基于环境DEA技术的Malmquist-Luenberger 指数方法[J]. 经济与管理,2014,28(3):62-67.
[10] 马占新. 数据包络分析及其应用案例[M]. 北京:科学出版社,2013:3-10.
[11] TONE K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509.
[12] CAVES D W, CHRISTENSEN L R, DIEWERT W E. The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity[J]. Econometrica, 1982, 50(6): 1393-1414.
[13] 国家发展改革委,外交部,商务部. 推动共建丝绸之路经济带和21 世纪海上丝绸之路的愿景与行动[N]. 人民日报,2015-03-29(006).
[14] 国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社,2010-2017.
[15] 国家统计局工业交通统计司. 中国能源统计年鉴[M]. 北京:中国统计出版社,2010-2017.
[16] IPCC 国家温室气体清单计划. 2006年IPCC国家温室气体清单指南[M]. 东京:日本全球环境战略研究所,2006.
[17] 陆砚池,方世明. 基于SBM-DEA和Malmquist模型的武汉城市圈城市建设用地生态效率时空演变及其影响因素分析[J]. 长江流域资源与环境,2017,26(10):1575-1586.