合流区竞争与协作换道判定方法与特性研究

东野长梅,石建军

交通运输研究 ›› 2018, Vol. 4 ›› Issue (6) : 38-46.

PDF(1791 KB)
PDF(1791 KB)
交通运输研究 ›› 2018, Vol. 4 ›› Issue (6) : 38-46.
专题

合流区竞争与协作换道判定方法与特性研究

  • 东野长梅,石建军
作者信息 +

Identification Method and Behavior Characteristics of Competitive/Cooperative Lane Changing in Expressway Weaving Area

  • DONGYE Chang-mei and SHI Jian-jun
Author information +
文章历史 +

摘要

为提高换道模型的精确性,基于接受间距、车头时距和碰撞时间三指标构建了竞争与协作换道行为的定量判定方法。首先,系统阐述了该方法的实施过程;然后,基于快速路合流区的车辆运行轨迹数据,通过实验验证了该方法的适用性;最后,对道路资源有限条件下的竞争与协作换道行为特性进行了统计分析,着重探讨了接受间距与相对速度关系、换道时间、后随车最大速度变化和加加速度等外显特征,并得到了不同接受间距下的竞争与协作换道概率。研究表明:所提竞争与协作行为的判定方法,能有效识别复杂环境中的换道行为类型;竞争与协作换道的接受间距均服从正态分布,在间距小于8m时,竞争换道发生概率随间距增大而增大,之后则随间距增大而减小;间距大于20m时,协作换道概率达到92.4%,竞争换道概率小于10%。

Abstract

In order to improve the accuracy of lane changing model, a quantitative method of identifying competitive/cooperative (C/C) lane changing behaviors was proposed according to acceptance gap, headway time and time-to-collision (TTC). Firstly, the process of this method was described systematically; Secondly, the application of the method was verified by experiment based on vehicle trajectory data at expressway weaving area; Finally, explicit characteristics of C/C behaviors, such as the relationship between acceptance gap and relative velocity, trans-line ride(TLR) time, maximum velocity variation and jerk of lag vehicle were analyzed, and C/C lane changing probabilities under different acceptance gaps were also obtained. The research results show that the proposed method can effectively identify C/C lane changing behaviors in complex environment. Acceptance gaps of C/C lane changing behaviors follow normal distribution. The probability of competitive lane changing increases with the increase of gap when it is less than 8 meters. When the gap is over 8 meters, it decreases with the increase of gap. When the gap is more than 20 meters, the probability of cooperative lane changing reaches to 92.4% while the probability of competitive lane changing is less than 10%.

关键词

城市交通 / 竞争行为 / 协作行为 / 行为判别 / 换道特性

Key words

urban traffic / competitive behavior / cooperative behavior / behavior identification / lane changing characteristics

引用本文

导出引用
东野长梅,石建军. 合流区竞争与协作换道判定方法与特性研究[J]. 交通运输研究. 2018, 4(6): 38-46
DONGYE Chang-mei and SHI Jian-jun. Identification Method and Behavior Characteristics of Competitive/Cooperative Lane Changing in Expressway Weaving Area[J]. Transport Research. 2018, 4(6): 38-46

参考文献

[1] 禹伟. 车道变换与交通拥挤致因关系的研究[D]. 成都:西南交通大学,2013.
[2] 李硕,杨晓芳. 基于元胞自动机的竞争型换道模型[J]. 交通运输研究,2018,4(4):9-15.
[3] GIPPS P G. A Model for the Structure of Lane Changing Decisions[J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414.
[4] BALAL E, CHEU R L, GYAN-SARDOKIE T, et al. Analysis of Discretionary Lane Changing Parameters on Freeways[J]. International Journal of Transportation Science and Technology, 2014, 3(3): 277-296.
[5] HIDAS P. Modelling Vehicle Interactions in Microscopic Simulation of Merging and Weaving[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62.
[6] WANG J. A Simulation Model for Motorway Merging Behavior[C]// The 16th International Symposium on Transportation and Traffic Theory. Maryland: the Scientific Committee, 2005: 281-301.
[7] SUN J, KONDYLI A. Modeling Vehicle Interactions During Lane-Changing Behavior on Arterial Streets[J]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25(8): 557-571.
[8] 孙剑,李克平,杨晓光. 拥挤交通流交织区车道变换行为仿真[J]. 系统仿真学报,2009,21(13):4174-4178, 4182.
[9] ZHAO L, SUN J, ZHANG H M. Observations and Analysis of Multistep-Approach Lane Changes at Expressway Merge Bottlenecks in Shanghai, China[J]. Transportation Research Record Journal of the Transportation Research Board, 2013, 2395(1): 73-82.
[10] 党睿娜,王建强,李克强,等. 高速公路行驶条件下的驾驶员换道特性[J]. 清华大学学报(自然科学版),2013,53(10):1481-1485.
[11] 谭云龙. 快速路合流区微观交通仿真车道变换模型研究[D]. 长春:吉林大学,2014.
[12] 李鹏飞,石建军,刘小明. 城市快速路竞争与协作换道行为特征分析[J]. 公路交通科技,2016,33(12):130-139.
[13] 李娟,曲大义,刘聪,等. 基于元胞自动机的车辆换道行为研究[J]. 公路交通科技,2016,33(11):140-145.
[14] DONGYE C M, SHI J J. Research on Lane-Changing Behavior in the Mixed Autonomous Vehicles and Human-Driven Vehicles Environment[C]// International Conference on Transportation & Development 2018. Pittsburgh: the Scientific Committee, 2018: 67-77.
[15] 柳明. 城市行驶环境中智能汽车的行为决策规划与运动控制[D]. 西安:西安理工大学,2018.
[16] 王琳. 城市道路车辆换道行为特性研究[D]. 北京:北京交通大学,2014.
[17] FENG F, BAO S, SAYER J R, et al. Can Vehicle Longitudinal Jerk Be Used to Identify Aggressive Drivers? An Examination Using Naturalistic Driving Data[J]. Accident Analysis & Prevention, 2017, 104: 125-136.
[18] PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the Assessment of Vehicle Trajectory Data Accuracy and Application to the Next Generation SIMulation (NGSIM) Program Data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262.
[19] 张荣辉,游峰,初鑫男,等. 车-车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报,2018,31(4):180-191.
[20] 秦严严,王昊,王炜. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报,2017,17(3):121-130.

基金

国家重点研发计划项目(2I038001201802)

PDF(1791 KB)

Accesses

Citation

Detail

段落导航
相关文章

/