基于边界速度的城市路网承载力估计方法

张彭,孙建平,雷方舒,全宇翔,朱广宇

交通运输研究 ›› 2018, Vol. 4 ›› Issue (6) : 31-37.

PDF(1489 KB)
PDF(1489 KB)
交通运输研究 ›› 2018, Vol. 4 ›› Issue (6) : 31-37.
专题

基于边界速度的城市路网承载力估计方法

  • 张彭,孙建平,雷方舒,全宇翔,朱广宇
作者信息 +

Estimation Algorithm of Urban Road Network Capacity Based on Boundary Network Velocity

  • ZHANG Peng, SUN Jian-ping, LEI Fang-shu, QUAN Yu-xiang and ZHU Guang-yu
Author information +
文章历史 +

摘要

为了估计路网瞬时所能承载的车辆数,首先建立在途车辆数与路网均速的关系,推算路网运行的边界速度;其次,提出路网中车辆速度分布的概率模型,并建立车速分布参数随路网均速变化的动态模型;进而,将边界速度代入动态模型获得对应的车速分布参数,恢复对应的车辆速度分布;将车速分布与交通流速度—密度曲线进行匹配,获得不同密度条件下车辆数所占比例;待求车辆总数乘以密度分布得到不同密度下的车辆数,不同密度下车头间距之和等于车道加权的公路总里程,解方程得到车辆总数。以北京市为例,用来自1.2 万辆私人小汽车的浮动车数据分别估算了北京市中心城区1 368km2范围内快速路、主干路、次支路三个等级路网的承载力。结果显示,该方法计算效率高、操作性强,适用于大规模路网测算,在交通运行仿真、分析及控制领域具有广泛的应用前景。

Abstract

In order to estimate the maximum volume of vehicles existing in network at an instant, the relationship between the volume of online vehicles and average network speed was presented, and the boundary network speed was deduced according to this relationship at first. Secondly, the probabilistic model of vehicle speeds distribution in network was established, and a dynamic model that depicts the parameters of vehicle speed distribution varying with average network speed was proposed. Furthermore, the boundary speed was introduced to the dynamic model to obtain the according parameter values of vehicle speed distribution, so as to obtain the speed distribution. The vehicle speed distribution was matched with the density-speed dependence curve to obtain the ratio of vehicle volume in different traffic flow densities to the total vehicle volume. The vehicle volumes in different densities were obtained by multiplying the total vehicle volume and density distribution. The sum of space headway of vehicles in different density equals to the road mileage weighted with the number of lanes. Then the total vehicle volume was obtained by solving equation. Beijing was taken as an example, more than 12 000 private cars were taken as floating cars. The area covered 1 368 square kilometers. The estimations of sub networks of expressways, arterials, branches were presented respectively. The result shows that the proposed method has the advantages of both high calculation efficiency and flexible implement, and adapts to large scale network. It has broad prospect in application of traffic analysis, simulation and control.

关键词

交通工程 / 城市路网 / 路网承载力 / 边界速度 / 速度分布

Key words

transportation engineering / urban road network / road network capacity / boundary of network velocity / distribution of vehicle speed

引用本文

导出引用
张彭,孙建平,雷方舒,全宇翔,朱广宇. 基于边界速度的城市路网承载力估计方法[J]. 交通运输研究. 2018, 4(6): 31-37
ZHANG Peng, SUN Jian-ping, LEI Fang-shu, QUAN Yu-xiang and ZHU Guang-yu. Estimation Algorithm of Urban Road Network Capacity Based on Boundary Network Velocity[J]. Transport Research. 2018, 4(6): 31-37

参考文献

[1] 钱晨. 基于节点多向堵塞的路网承载力研究[D]. 合肥:合肥工业大学,2017.
[2] 李婷. 基于出行时耗的混合交通路网承载力水平评估[D]. 广州:华南理工大学,2016.
[3] CHENG L, WANG W, YU C Q, et al. Modelling Urban Road Network Capacity[J]. Industrial Engineering & Engineering and Management, 2007, 21(2): 84-88.
[4] CHEN H,ZHOU J B,WU Y. Modeling of Road Network Capacity Research in Urban Central Area[J]. Applied Mechanics & Materials, 2011, 40(4): 778-784.
[5] 邓娜,袁振洲. 基于改进时空耗散法的交通承载力理论模型研究[J]. 公路,2017(6):211-215.
[6] KASIKITWIWAT P, CHEN A. Analysis of Transportation Network Capacity Related to Different System Capacity Concepts[J]. Journal of the Eastern Asia Society for Transportation Study, 2005, 6: 1439-1454.
[7] FUKUSHIMA M. On the Dual Approach to the Traffic Assignment Problem[J]. Transportation Research Part B: Methodological, 1984, 18(3): 235-245.
[8] AKAMATSU T, MIYAWAKI O. Maximum Network Capacity Problem under the Transportation Equilibrium Assignment[J]. Infrastructure Planning Review, 1995, 12: 719-729.
[9] YANG H, BELL M, MENG Q. Modeling the Capacity and Level of Service of Urban Transportation Networks[J]. Transportation Research Part B: Methodological, 2000, 34(4): 255-275.
[10] XU X D, CHEN A, JANSUWAN S, et al. Modeling Transportation Network Redundancy: Complementary Measures and Computational Methods[J]. Transportation Research Procedia, 2015, 114: 283-302.
[11] WU J H, CHEN Y, FLORIAN M. The Continuous Dynamic Network Loading Problem: A Mathematical Formulation and Solution Method[J]. Transportation Research Part B: Methodological, 1995, 32(3): 173-187.
[12] GAO Z Y, SONG Y F. A Reserve Capacity Model of Optimal Signal Control with Set-Equilibrium Route Choice[J]. Transportation Research Part B: Methodological, 2002, 36(4): 313-323.
[13] 李晶,于雷. 基于Visum的路网容量计算理论研究[J]. 城市交通,2006,4(2):68-73.
[14] DU M, CHENG L,JIANG X. Sensitivity Based Heuristics for Network Capacity Estimation in Transportation[C]// Proceedings of Transportation Research Board Meeting. Washington D C: TRB, 2015.
[15] 吴炼,王婧,李锁平,等. 基于路网承载力分析的用地布局研究[J]. 城市交通,2013(3):34-41.
[16] LUO Z, LIU Y, YU J. Estimation of Urban Transportation Network Capacity Considering Traveler Road Preferences[J]. Journal of Urban Planning & Development, 2012, 138(2): 133-142.
[17] XU W, LI Y,WANG H. Hybrid Intelligent Algorithm for Determining Network Capacity with Transportation Time Reliability Constraints[J]. International Journal of Computational Intelligent System, 2011, 4(6): 1195-1203.
[18] DU M Q, JIANG X W, CHENG L, et al. Robust Evaluation for Transportation Network Capacity under Demand Uncertainty[J]. Advanced Transportation, 2017, 2017: 1-11.
[19] AN K, HONG K L. Two-Phase Stochastic Program for Transit Network Design under Demand Uncertainty[J]. Transportation Research Part B: Methodological, 2016, 84: 157-181.
[20] 贾顺平,彭宏勤,刘爽. 基于居民出行特征与路网承载力的城市交通状态研究[J]. 交通运输系统工程与信息,2011,11(5):81-85.
[21] 安连华,管德永,刘法胜. 基于大数据的交通网络容量标定[C]// 2017年中国城市交通规划年会论文集. 上海:中国建筑工业出版社,2017:1-9.
[22] 张彭,雷方舒,张晓松,等. 机动车出行需求管理对路网运行影响的系统分析方法[J]. 交通运输系统工程与信息,2017,17(1): 227-234.
[23] LAVAL J A, CASTRILLON F. Stochastic Approximations for the Macroscopic Fundamental Diagram of Urban Networks[J]. Transportation Research Part B: Methodological, 2015, 81(3): 904-916.
[24] DAGANZO C F, GONZALES E J, GAYAH V. Traffic Congestion in Networks, and Alleviating It with Public Transportation and Pricing[R]. Berkeley: Center for Future Urban Transport, Institute of Transportation Studies, University of California, 2011.
[25] 岳园圆. 基于多源数据的北京市多层次交通流基本图研究[D]. 北京:北京交通大学,2015.

基金

国家重点研发计划项目(2017YCF0803305-06);国家自然科学基金项目(61572069);中央引导地方科技发展专项(Z161100005116006);北京市委市政府重点工作应急预启动专项(Z171100004417024);北京市科技计划项目(Z181100005818001)

PDF(1489 KB)

Accesses

Citation

Detail

段落导航
相关文章

/