车联网环境下公交路径交通状态估计方法研究

李晨朋,韩印,王馨玉

交通运输研究 ›› 2018, Vol. 4 ›› Issue (5) : 29-34.

PDF(1462 KB)
PDF(1462 KB)
交通运输研究 ›› 2018, Vol. 4 ›› Issue (5) : 29-34.
专题

车联网环境下公交路径交通状态估计方法研究

  • 李晨朋,韩印,王馨玉
作者信息 +

Traffic State Estimation Method of Bus Route in Connected Vehicle Environment

  • LI Chen-peng, HAN Yin and WANG Xin-yu
Author information +
文章历史 +

摘要

传统感应线圈的交通状态估计方法已无法满足准确性和实时性的状态估计需要,为此提出了基于联网公交车辆实时速度的交通状态估计模型。所提模型借助实时信息采集系统的高效性和准确性的优势,对道路交通运行状态进行估计,同时利用卡尔曼滤波算法对交通状态变量进行更新。基于历史观测数据对更新后的交通状态变量进行修正,进而得到交通状态的估计值。通过采集数据并进行大量的实验,研究结果表明:基于联网公交实时速度的状态估计模型,在各种交通环境条件和占有率下,估计值误差指数(变异系数) 均小于15%,最大仅为13.15%;状态估计修正模型与状态估计模型相比,估计值误差指数下降了2%,总体误差优化性能提升了11.87%。在确保实时性和高效性的同时,基于联网公交车辆实时速度的交通状态估计模型解决了传统道路交通状态估计方法准确性低的问题。

Abstract

The traffic state estimation method based on the traditional induction loop was unable to meet the accurate and real-time needs. In order to solve this problem, a traffic state estimation model based on real-time speed of connected buses was proposed. The high-efficiency and accuracy advantages of the real-time information acquisition system was used to estimate road traffic operation state in the model, and the Kalman filter algorithm was used to update the traffic state variables at the same time. Then, the updated traffic state variables were corrected using the historical observation data, and finally the estimated value of traffic state was obtained. Based on data collection and a large number of experiments, the results showed that the error index (coefficient of variation) of the estimated value of the state estimation model based on real-time bus speed was less than 15% and the maximum was only 13.15% under various traffic environmental conditions and occupancy rates. Compared with the state estimation model, the error index of the estimated value of the state estimation correction model was decreased by an average of 2%, and the overall error optimization performance was increased by 11.87%. The traffic state estimation model based on real-time speed of connected buses can handle the problem of low accuracy of the traditional road traffic state estimation method with the guarantee of real-time and high efficiency.

关键词

城市交通 / 公交车速 / 状态估计模型 / 卡尔曼滤波 / 估计修正模型

Key words

urban traffic / bus speed / state estimation model / Kalman filter / estimation correction model

引用本文

导出引用
李晨朋,韩印,王馨玉. 车联网环境下公交路径交通状态估计方法研究[J]. 交通运输研究. 2018, 4(5): 29-34
LI Chen-peng, HAN Yin and WANG Xin-yu. Traffic State Estimation Method of Bus Route in Connected Vehicle Environment[J]. Transport Research. 2018, 4(5): 29-34

参考文献

[1] 马万经,杨晓光. 公交信号优先控制策略研究综述[J]. 城市交通,2010,8(6):70-78,16.
[2] ASIF M T, DAUWELS J, GOH C Y, et al. Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 794-804.
[3] REN C X, ZHANG W B, QIN L Q, et al. Queue Spillover Management in a Connected Vehicle Environment[J]. Future Internet, 2018, 10(8): 79-93.
[4] TSELENTIS D I, KARLAFTIS M G, VLAHOGIANNI E I. Improving Short-Term Traffic Forecasts: to Combine Models or not to Combine?[J]. IET Intelligent Transport Systems, 2015, 9(2): 193-201.
[5] WU Y K, TAN H C, QIN L Q, et al. A Hybrid Deep Learning Based Traffic Flow Prediction Method and Its Understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180.
[6] KARLAFTIS M G, VLAHOGIANNI E I. Statistical Methods Versus Neural Networks in Transportation Research: Differences, Similarities and Some Insights[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(3): 387-399.
[7] YIN W, TENG J, YANG X G, et al. Using CVIS to Improve Bus Schedule Adherence: A Predictive Control Strategy and Its Hardware-in-the-Loop Field Tests[J]. Discrete Dynamics in Nature and Society, 2013, 2013: 1-8.
[8] 姚佼,杨晓光,杨晓芳,等. 基于车载数据的交叉口车辆行为辨识[J]. 公路交通科技,2012,29(6):127-132.
[9] HU J, PARK B B, LEE Y J. Transit Signal Priority Accommodating Conflicting Requests under Connected Vehicles Technology[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 173-192.
[10] ZHAO X M, MU K N, HUI F, et al. A Cooperative Vehicle-Infrastructure Based Urban Driving Environment Perception Method Using a D-S Theory-Based Credibility Map[J]. Optik, 2017, 138: 407-415.
[11] 符旭,欧梦宁,闫旭普,等. 基于分布式车辆速度检测信息的城市快速路交通状态估计[J]. 交通运输工程与信息学报,2016,14(4):105-112.
[12] 唐克双,徐天祥,董可然,等. 基于低频定点检测数据的交叉口交通状态估计[J]. 同济大学学报(自然科学版),2017,45(5):705-713,720.
[13] YANG Y J, XU Y B, HAN J Y, et al. Efficient Traffic Congestion Estimation Using Multiple Spatio-Temporal Properties[J]. Neurocomputing, 2017, 267: 344-353.
[14] 乔少杰,韩楠,朱新文,等. 基于卡尔曼滤波的动态轨迹预测算法[J]. 电子学报,2018,46(2):418-423.
[15] FOUNTOULAKIS M, BEKIARIS-LIBERIS N, RONCOLIC, et al. Highway Traffic State Estimation with Mixed Connected and Conventional Vehicles: Microscopic Simulation-Based Testing[J]. Transportation Research Part C: Emerging Technologies, 2017, 78: 13-33.
[16] VIEGAS D, BATISTA P, OLIVEIRA P, et al. Discrete-Time Distributed Kalman Filter Design for Formations of Autonomous Vehicles[J]. Control Engineering Practice, 2018, 75: 55-68.
[17] WANG M, DAAMEN W, HOOGENDOORN S P, et al. Connected Variable Speed Limits Control and Car- Following Control with Vehicle-Infrastructure Communication to Resolve Stop-and-go Waves[J]. Journal of Intelligent Transportation Systems Technology Planning & Operations, 2016, 20(6): 559-572.
[18] 周莉,暨育雄,王一喆. 信息交互环境下公交信号优先控制仿真与评估[J]. 武汉理工大学学报(交通科学与工程版),2017,41(5):816-820.

PDF(1462 KB)

Accesses

Citation

Detail

段落导航
相关文章

/