摘要
盾构法是目前城市轨道交通建设施工中的主要方法之一。鉴于盾构在施工过程中不可避免地会遇到近距离下穿既有建筑物的情况,使其有沉降、倾斜、拉伸、压缩变形等潜在风险,尤其是地铁车站及风道,有必要对其影响进行风险评估及施工控制。以北京地铁8 号线盾构区间隧道下穿地铁14 号线车站的东南风道为例,在对施工风险进行评估的基础上,借助有限差分软件对施工过程进行了动态模拟,分析了盾构施工引起的地层位移、应力及其对邻近风道结构的影响,并提出了加固土体、控制盾构参数、加强二次注浆等控制措施,以减少对邻近风道的影响。现场监测结果表明,在采取有效控制措施后,风道结构最大变形被控制在2mm以内,从而验证了所提方案的合理性。
Abstract
The shield method is one of the main methods in metro construction. In the process of construction, it is unavoidable to encounter situations that the shield machine has to pass underneath existing buildings in close distances, which may has potential impacts on buildings, such as settlement, tilt, tension, compression deformation, etc., especially for subway stations and wind tunnels. Therefore, it is necessary to carry out research on this corresponding risk assessment and construction control measures. The internal tunnel of Beijing Subway line 8 passing underneath the southeast air duct of Yongdingmen outside station of Subway Line 14 was taken as an example, and the construction risk was assessed firstly. Subsequently, the finite-difference software was used to simulate the construction process, and the ground displacement and stress caused by shield construction and its influence on the structure of adjacent air ducts were analyzed. The reinforcement of soil mass, control of shield parameters, grouting and other control measures were proposed to reduce the impact on adjacent air ducts. The monitoring results show that the maximum deformation of air duct structure was controlled within 2mm after adopting effective control measures, verifying the rationality of the proposed scheme.
关键词
盾构隧道 /
风险控制 /
建筑物 /
近接施工 /
数值模拟
Key words
shield tunnel /
risk control /
building /
approaching excavation /
numerical simulation
李晓亮,孙梓栗,李谷阳,黄杉,王海飞,徐前卫.
盾构下穿既有车站风道的施工风险评估及控制研究[J]. 交通运输研究. 2018, 4(3): 64-72
LI Xiao-liang, SUN Zi-li, LI Gu-yang, HUANG Shan, WANG Hai-fei and XU Qian-wei.
Construction Risk Assessment and Control of Shield Machine Passing Underneath Existing Air Duct of Subway Station[J]. Transport Research. 2018, 4(3): 64-72
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 解楠. 城市盾构隧道施工中的风险管理[D]. 西安:西安工业大学,2008.
[2] 朱瑶宏,朱雁飞,黄德中,等. 类矩形盾构法隧道技术的开发与应用[J]. 现代隧道技术,2016,53(S1):1-12.
[3] 中国公路学报编辑部. 中国隧道工程学术研究综述·2015[J]. 中国公路学报,2015,28(5):1-65.
[4] 张旭辉,邢懿,杨平. 大盾构隧道施工对周边敏感性建筑物的影响研究[J]. 地下空间与工程学报,2015,11(6):1539-1544.
[5] 魏纲,叶琦,虞兴福. 杭州地铁盾构隧道掘进对建筑物影响的实测分析[J]. 现代隧道技术, 2015, 52(3):150-159.
[6] 申兴柱,高锋,王少鹏,等. 盾构隧道施工对浅基础建筑物影响研究[J]. 施工技术,2017,46(13):132-137.
[7] 丁智,秦建设,魏新江,等. 盾构掘进对邻近浅基础框架建筑物影响研究[J]. 重庆交通大学学报(自然科学版),2017,36(2):11-16,23.
[8] MOONEY M A, GRASMICK J, KENNEALLY B, et al. The Role of Slurry TBM Parameters on Ground Deformation: Field Results and Computational Modeling[J]. Tunnelling and Underground Space Technology, 2016, 57: 257-264.
[9] HAVLÍČEK M, LASSNER W. Investigation on the Effects of Twin Tunnel Excavations Beneath a Road Underpass[J]. Electronic Journal of Geotechnical Engineering, 2011, 16(1): 1-8.
[10] 凌程建,葛庆子,肖承波,等. 某工程建设对成都地铁2号线隧道的安全性影响评估[J]. 四川建筑科学研究,2017,43(5):44-49.
[11] 王家祥. 昆明地铁1号线盾构隧道穿越密集居民区施工控制技术研究[J]. 中外公路,2018(1):225-229.
[12] 李超人,周传波,陈东,等. 双线盾构施工引起地表及建筑物沉降规律研究[J]. 城市轨道交通研究,2017,20(6):108-112.
[13] 王锡军,周林生. 地铁盾构穿越暗挖风道施工技术[J]. 建筑技术,2009,40(11):987-989.
[14] 姚八五. 基于地铁盾构穿越暗挖风道施工技术的分析[J]. 科技与企业,2013(17):187,189.
[15] 汪超. 盾构下穿建筑物施工控制要点[J]. 福建建设科技,2016(1):62-65.
[16] 张云,殷宗泽,徐永福. 盾构法隧道引起的地表变形分析[J]. 岩石力学与工程学报,2002(3):388-392.