纵坡对钢桥面铺装层力学响应的影响

袁海舟,周建珠,陈小兵,柏忠伟,徐利彬

交通运输研究 ›› 2018, Vol. 4 ›› Issue (3) : 57-63.

PDF(1835 KB)
PDF(1835 KB)
交通运输研究 ›› 2018, Vol. 4 ›› Issue (3) : 57-63.
安全与环保

纵坡对钢桥面铺装层力学响应的影响

  • 袁海舟,周建珠,陈小兵,柏忠伟,徐利彬
作者信息 +

Influence of Longitudinal Slope on Steel Deck Pavement Mechanical Responses

  • YUAN Hai-zhou, ZHOU Jian-zhu, CHEN Xiao-bing, BAI Zhong-wei and XU Li-bin
Author information +
文章历史 +

摘要

为提出大纵坡钢桥面铺装层设计指标,分析了坡道上车辆与桥面的相互作用以及沥青混合料的时温等效特性。在此基础上,采用ABAQUS软件建立了钢桥面铺装局部三维有限元模型。最后,分析了匀速行驶及紧急制动时纵坡对钢桥面铺装层力学响应的影响。结果表明:纵坡对钢桥面铺装层表面最大横向拉应力、层底最大横向剪应力和最大竖向位移几乎无影响;纵坡对钢桥面铺装层表面最大纵向拉应力和层底最大纵向剪应力影响较为显著;相比匀速行驶时,紧急制动时下坡道纵向拉应力及纵向剪应力大幅增大,尤其是纵向剪受力更不利。在大纵坡钢桥面铺装层设计中,计算铺装层表面最大纵向拉应力和层底最大纵向剪应力时必须充分考虑纵坡影响,重点考虑界面抗剪强度。

Abstract

In order to propose the design index of large longitudinal slope steel deck pavement, the interaction between a vehicle and bridge deck on ramp was analyzed. The time-temperature equivalent characteristic of asphalt mixture was analyzed. On this basis, a three-dimensional finite element model of local steel deck pavement was established by using ABAQUS software. Finally, the influence of longitudinal slope on steel deck pavement mechanical responses under uniform speed and emergency braking was analyzed. The results demonstrate that the longitudinal slope has nearly no effect on the maximum transverse tensile stress at the surface, the maximum transverse shear stress at the bottom, together with the maximum vertical displacement, of steel deck pavement. The longitudinal slope has great effect on the maximum longitudinal tensile stress at the surface, as well as the maximum longitudinal shear stress at the bottom, of steel deck pavement. Compared with uniform speed, the longitudinal tensile stress and shear stress of downhill slope increases greatly under emergency braking, especially the longitudinal shear stress is more unfavorable. In the design of large longitudinal slope steel deck pavement, the influence of longitudinal slope must be considered during the calculation of maximum longitudinal tensile stress at the surface and maximum longitudinal shear stress at the bottom. The shear strength of interface should be considered seriously as well.

关键词

纵坡 / 钢桥面铺装 / 应力 / 时温等效 / 有限元

Key words

longitudinal slope / steel deck pavement / stress / time-temperature equivalence / finite element method

引用本文

导出引用
袁海舟,周建珠,陈小兵,柏忠伟,徐利彬. 纵坡对钢桥面铺装层力学响应的影响[J]. 交通运输研究. 2018, 4(3): 57-63
YUAN Hai-zhou, ZHOU Jian-zhu, CHEN Xiao-bing, BAI Zhong-wei and XU Li-bin. Influence of Longitudinal Slope on Steel Deck Pavement Mechanical Responses[J]. Transport Research. 2018, 4(3): 57-63

参考文献

[1] KAINUMA S, JEONG Y S, AHN J H, et al. Behavior and Stress of Orthotropic Deck with Bulb Rib by Surface Corrosion[J]. Journal of Constructional Steel Research, 2015, 113: 135-145. [2] 李洪军,丁庆军,赵明宇. 钢桥面铺装层组合结构性能研究[J]. 公路工程,2016,41(6):188-193. [3] 钟科,陈飞,魏小皓,等. 基于加速加载试验的钢桥面铺装性能研究[J]. 公路交通科技,2017,34(11):50-56. [4] 赵岩荆,周岚. 钢箱梁与桥面铺装层温度场协同变化规律分析[J]. 交通运输研究,2015,1(3):78-82. [5] 李烨. 裂缝对钢桥面铺装受力性能的影响[J]. 佳木斯大学学报(自然科学版),2015,33(2):180-182. [6] 李国芬,王宏畅,王勇,等. 基于修正Burgers模型的钢桥面铺装车辙有限元分析[J]. 林业工程学报,2016,1(5):120-125. [7] KIM T W, BAEK J, LEE H J, et al. Effect of Pavement Design Parameters on the Behaviour of Orthotropic Steel Bridge Deck Pavements under Traffic Loading[J]. International Journal of Pavement Engineering, 2014, 15(5): 471-482. [8] 吴昊. 大坡度匝道钢桥面铺装结构设计研究[D]. 南京:东南大学,2013. [9] 祁文洋,孔晨光,于增义. 纵坡弯道桥面沥青铺装结构剪应力分析[J]. 华东交通大学学报,2014,31(3):18-22. [10] 廖亚雄,陈修和,张玉斌,等. 考虑纵坡与制动效应的钢桥面铺装粘结层剪应力响应特性[J]. 长沙理工大学学报(自然科学版),2016,13(2):8-14. [11] 中华人民共和国交通运输部. 公路工程技术标准:JTGB01—2014[S]. 北京:人民交通出版社有限公司,2014. [12] ALRASHYDAH E I, ABO-QUDAIS S A. Hot Mix Asphalt Time-Temperature Shifting and Fitting Techniques: A Comparative Study[J]. Construction and Building Materials, 2017, 146: 514-523. [13] WILLIAMS M L, LANDEL R F, FERRY J D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids[J]. Journal of the American Chemical Society, 1955, 77(14): 3701-3707. [14] 周荣贵. 公路纵坡坡度与坡长限制的研究[D]. 北京:北京工业大学,2004. [15] 闫莹. 公路长大下坡路段线形指标对驾驶员心理生理影响的研究[D]. 西安:长安大学,2006. [16] 罗桑,钟科,钱振东. 钢桥面复合铺装结构永久变形预估[J]. 同济大学学报(自然科学版),2013,41(3):397-401. [17] 康海贵,郑元勋,蔡迎春,等. 基于FWD的沥青路面弯沉及反算模量的温度修正[J]. 中外公路,2007,27(6):43-46. [18] 田晓霞. 基于SPT 的沥青混合料高温性能的试验研究[D]. 南京:东南大学,2007. [19] 陈磊磊,钱振东. 基于简单性能试验的环氧沥青混合料动态模量研究[J]. 建筑材料学报,2013,16(2):341-344. [20] 中华人民共和国交通运输部. 公路钢结构桥梁设计规范:JTG D64—2015[S]. 北京:人民交通出版社,2015. [21] 李昶,顾兴宇. 大跨径钢桥桥面铺装力学分析与结构设计[M]. 南京:东南大学出版社,2007:150-160. [22] 罗瑞林. 大纵坡钢桥面铺装结构力学研究[D]. 南京:东南大学,2017.

基金

国家自然科学基金面上项目(51778142)

PDF(1835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/