为了提高城市交叉口的通行能力、保障交通安全、研究车辆行驶规律,提出了一种新的与跟驰结合的换道概率实时判断模型。首先,从车辆运行状态出发,将交叉口车辆行驶过程分为跟驰-换道-再跟驰3个阶段;然后,在全速差跟驰模型(Full Velocity Difference Model,简称FVD模型)的基础上,将跟驰与换道模型相结合,根据3 阶段建立换道概率模型,并利用实测数据进行参数标定;最后,通过模拟仿真交叉口路段,对模型影响因素进行分析。仿真结果显示,在靠近交叉口停车线过程中,车流速度浮动会趋于平稳;当离交叉口停车线距离、车辆分布情况均相同时,相同道路环境下,前方车辆中大型车辆的比例越高,车辆换道概率越大,大型车辆比例上升20%,车辆换道概率上升3%;当前方大车比例、车辆分布情况相同时,离停车线距离增加100m,车辆换道概率增加10%。这符合实际运行中车辆运行规律,可为探究其他影响因素提供参考。
Abstract
In order to improve the traffic capacity at intersection and ensure traffic safety, and also study the driving state of vehicles, a new real-time judgment model of the probability of lane-changing combined with the car-following model was proposed. Firstly, according to the state of vehicle, the driving process of vehicle was divided into three stages: car-following, lane-changing and back to car-following; secondly, based on FVD (Full Velocity Difference Model), a lane-changing probability model was established according to the three stages combined with car-following model and lane-changing model, and parameters of the new model were calibrated using actual data; finally, some influencing factors of the model were analyzed by simulating the environment of intersection. The simulation results show that the traffic velocity is more stable when the vehicles approaching the intersection stop line. In condition of the distance from the stop line to the vehicle and vehicle distribution are the same, either the road environment, the probability of lane-changing is greater when the proportion of large vehicles in front of the vehicle is higher. As the proportion of large vehicles increasing 20%, the probability of lane-changing increases 3%. In the condition that the proportion of large vehicles in front of the vehicle is same, either the vehicle distribution, the probability of lane-changing is increased by 10% as the distance from the stop line is shortened by 100 meters. It indicates that the vehicle lane-changing probability model conforms to the vehicle state in actual operation, and can provide reference for studying other influencing factors.
关键词
交通流 /
跟驰模型 /
换道模型 /
城市交通 /
交叉口
Key words
traffic flow /
car-following model /
lane-changing model /
urban traffic /
intersection
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郑杨边牧. 城市交叉口前道路车辆换道行为研究[D]. 合肥:合肥工业大学,2017.
[2] TANG T Q, LI C Y, HUANG H J. A New Car-Following Model with the Consideration of the Driver′s Forecast Effect[J]. Physics Letter A, 2010, 374(38): 3951-3956.
[3] 王昊,刘振全,张志学,等. 考虑双前导车的跟驰与换道联合模型[J]. 东南大学学报(自然科学版),2015,45(5):985-989.
[4] 丁建勋,郑杨边牧,张梦婷,等. 临近交叉口的车辆跟驰换道行为研究[J]. 交通运输系统工程与信息,2017,17(3):60-66.
[5] 姜锐,吴清松. 一种新的交通流动力学模型[J]. 科学通报,2000,45(17):1895-1899.
[6] TOLEDO T. Driving Behaviors: Models and Challenges[J]. Transport Reviews, 2007, 27 (1): 65-84.
[7] 张安英. 基于预判概率的换道决策模型研究[C]// 第八届中国智能交通年会优秀论文集. 北京:中国智能交通协会,2013:340-349.
[8] GIPPS P G. A Model for the Structure of Lane-Changing Decisions[J]. Transportation Research Part B, 1986, 20(5): 403-414.
[9] YANG Q, KOUTSOPOULOS H N. A Microscopic Traffic Simulator for Evaluation of Dynamic Traffic Management Systems[J]. Transportation Research Part C, 1996, 4(3): 113-129.
[10] 周红媚,孙叶,徐秀娟. 基于随机效用理论的城市道路车辆自由换道行为研究[J]. 交通运输研究,2017,3(2):9-16.
[11] 邓建华,冯焕焕. 基于换道决策机理的多车道元胞自动机模型[J]. 交通运输系统工程与信息,2018,18(3):68-73.
[12] LIU P, XU C C, WANG W, et al. Identifying Factors Affecting Drivers′ Selection of Unconventional Outside Left-turn Lanes at Signallised Intersections[J]. IET Intelligent Transport Systems, 2013, 7(4): 396-403.
[13] TANG T Q, WANG Y P, YANG X B, et al. A New Car-Following Model Accounting for Varying Road Condition[J]. Nonlinear Dynamics, 2012, 70(2): 1397-1405.
[14] MA W J, XIE H Z, LIU Y, el at. Coordinated Optimization of Signal Timings for Intersection Approach with Per-Signals[J]. Transportation Research Record, 2013, 2355: 93-104.
[15] 时柏营,杨晓光,于晓斐. 考虑与跟驰模型结合的自由换道模型及仿真[J]. 交通科学与工程,2009,25(4):91-96.
[16] 唐铁桥,黄海军,薛郁. 一种改进的两车道交通流格子模型[J]. 物理学报,2006,55(8):4026-4031.
[17] CHARISMA C F, BEN-AKIVA M E. Lane Selection Model for Urban Intersections[J]. Transportation Research Record, 2008, 2088: 167-176.
[18] HELBING D, TILCH B. Generalized Force Model of TrafficDynamics[J]. Physical Review E, 1998, 58(1): 133-138.