基于模糊神经网络的驾驶警觉度识别方法研究

吴志敏,潘雨帆,洪治潮

交通运输研究 ›› 2018, Vol. 4 ›› Issue (3) : 30-35.

PDF(1395 KB)
PDF(1395 KB)
交通运输研究 ›› 2018, Vol. 4 ›› Issue (3) : 30-35.
专题

基于模糊神经网络的驾驶警觉度识别方法研究

  • 吴志敏,潘雨帆,洪治潮
作者信息 +

Recognition Method of Driving Vigilance Based on Fuzzy Neural Network

  • WU Zhi-min, PAN Yu-fan and HONG Zhi-chao
Author information +
文章历史 +

摘要

为了有效识别驾驶警觉度,构建了一种基于脑电信号的驾驶警觉度识别方法。首先,以主观疲劳测评、驾驶行为绩效作为量化指标,验证驾驶警觉度等级划分的合理性。在此基础上,对脑电信号数据进行小波变换提取特征参数,作为驾驶警觉度的识别特征指标,结合模糊神经网络构建了驾驶警觉度识别模型。最后,采用该模型对20 名驾驶员连续驾驶3h 的脑电数据进行试算。结果表明:通过对前后时段的主观疲劳与行为数据进行对比分析,两时段数据存在着显著差异性,说明驾驶警觉度等级划分具有合理性;采用模糊神经网络的识别结果优于BP神经网络,其模型识别正确率为81.29%~84.95%,且平均正确率为83.12%,该方法可用于驾驶警觉度的识别。

Abstract

In order to recognize driving vigilance effectively, an recognition method of driving vigilance based on electroencephalogram(EEG) was constructed. Firstly, the driver′s subjective fatigue measure and driving behavior performances were used as quantitative indexes to validate the rationality of driving vigilance grade division. The wavelet transformation was used to extract the characteristic parameters for the EEG data, which can be used as the recognition characteristic indexes of driving vigilance. Meanwhile, combined with fuzzy neural network, the recognition model for driving vigilance was established. Finally, the model was used to calculate the EEG data of 20 drivers who drove 3 hours continuously. The results show that through comparing and analyzing subjective fatigue and behavioral data at early and later period, there are significant differences between the data of two periods, which shows that the partition of driving vigilance grade is reasonable; the recognition result of fuzzy neural network is better than that of BP neural network, the recognition accuracy rate of the model is between 81.29%~84.95%, and the average accuracy rate is 83.12%, which indicates the method can be used to recognize driving vigilance.

关键词

模糊神经网络 / 驾驶警觉度等级 / 脑电信号 / 小波变换 / 识别模型

Key words

fuzzy neural network / driving vigilance grade / electroencephalogram(EEG) / wavelet transform / recognition model

引用本文

导出引用
吴志敏,潘雨帆,洪治潮. 基于模糊神经网络的驾驶警觉度识别方法研究[J]. 交通运输研究. 2018, 4(3): 30-35
WU Zhi-min, PAN Yu-fan and HONG Zhi-chao. Recognition Method of Driving Vigilance Based on Fuzzy Neural Network[J]. Transport Research. 2018, 4(3): 30-35

参考文献

[1] 傅佳伟,石立臣,吕宝粮. 基于EEG的警觉度分析与估计研究综述[J]. 中国生物医学工程学报, 2009, 28(4):589-596. [2] 汪澎. 驾驶人警觉状态检测技术研究[D]. 镇江:江苏大学,2010. [3] 李凡. 基于方向盘握力的司机警觉度检测研究[D]. 上海:上海交通大学,2014. [4] 董书琴,谢宏. 基于CSP与SVM算法的警觉度脑电信号分类[J]. 微型机与应用,2011,30(16):82-84. [5] PAPADELIS C, CHEN Z, KOURTIDOU-PAPADELI C, et al. Monitoring Sleepiness with on-Board Electrophysiological Recordings for Preventing Sleep-Deprived Traffic Accidents[J].ClinicalNeurophysiology,2007,118(9):1906-1922. [6] MBOUNA R O, KONG S G, CHUN M G. Visual Analysis of Eye State and Head Pose for Driver Alertness Monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1462-1469. [7] SZALMA J L, WARM J S, MATTHEWS G, et al. Effects of Sensory Modality and Task Duration on Performance, Workload, and Stress in Sustained Attention[J]. Human Factors, 2004, 46(2):219-233. [8] GRIER R A, WARM J S, DEMBER W N, et al.The Vigilance Decrement Reflects Limitations in Effortful Attention, Not Mindlessness[J]. Journal of the Human Factors & Ergonomics Society, 2003, 45(3): 349-359. [9] ZHAO C, ZHAO M, LIU J, et al. Electroencephalogram and Electrocardiograph Assessment of Mental Fatigue in a Driving Simulator[J]. Accident Analysis & Prevention, 2012, 45(1):83-90. [10] BROOKHUIS K A, WAARD D. Monitoring Drivers′ Mental Workload in Driving Simulators Using Physiological Measures[J]. Accident Analysis & Prevention, 2010, 42(3): 898-903. [11] 宋立国,陆尧胜. 小波分析在脑电信号处理中的应用[J]. 中国医疗设备,2007,22(7):7-10. [12] KALBERMATTEN M, VILLE D V D, TURBERG P, et al. Multiscale Analysis of Geomorphological and Geological Features in High Resolution Digital Elevation Models Using the Wavelet Transform[J]. Geomorphology, 2012, 138(1): 352-363. [13] 张川. 基于模糊神经网络的车型识别技术研究[D]. 武汉:武汉理工大学,2013. [14] 司景萍,马继昌,牛家骅,等. 基于模糊神经网络的智能故障诊断专家系统[J]. 振动与冲击,2017,36 (4):164-171. [15] LIN F J, LIN C H, SHEN P H. Self-Constructing Fuzzy Neural Network Speed Controller for Permanent- Magnet Synchronous Motor Drive[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(5): 751-759. [16] 吴志敏. 基于脑电信号的驾驶持续性注意水平识别方法研究[D]. 成都:西南交通大学,2017. [17] 许兴军,颜钢锋. 基于BP 神经网络的股价趋势分析[J].浙江金融,2011(11):57-59.

PDF(1395 KB)

Accesses

Citation

Detail

段落导航
相关文章

/