为研究大纵坡钢桥面铺装层底剪应力计算方法,首先基于ABAQUS软件构建了钢桥面铺装局部三维有限元模型,用以计算铺装层剪应力大小。然后,采用正交设计法和多元回归方法得出
大纵坡钢桥面铺装层底最大纵向剪应力回归公式,并对其精度加以验证,同时分析了回归公式中各参数对铺装层底最大纵向剪应力的影响。最后,进一步回归了紧急制动时层底最大纵向剪应力计算公式,并以仁皇山大桥工程为例加以验证。结果表明,大纵坡钢桥面铺装层底最大纵向剪应力随纵坡、铺装层模量和U肋宽度的增大而增大,随钢板厚度和横隔板间距的增大而减小。在大纵坡钢桥面铺装设计中,可通过减小纵坡、铺装层模量、U肋宽度或增大钢板厚度、横隔板间距来减小铺装层底最大剪应力,从而提升铺装层界面的安全性。
Abstract
In order to calculate shear stress at the bottom of large longitudinal slope steel deck pavement, firstly a three-dimensional finite element model of steel deck pavement was built to calculate shear stress of deck pavement based on ABAQUS software. Then, based on orthogonal design method and multiple regression method, a calculation formula of maximum longitudinal shear stress at the bottom of deck pavement was regressed. The accuracy of the regression formula was verified, and the influence of parameters in regression formula on the maximum longitudinal shear stress was analyzed. Finally, the maximum longitudinal shear stress at the bottom of steel deck pavement under emergency braking was regressed. The calculation example of Renhuangshan bridge project was given. The results show that the maximum longitudinal shear stress at the bottom of large longitudinal slope steel deck pavement increases with the increasing of longitudinal slope, modulus of deck pavement and width of U rib. However, it decreases with the increasing of steel plate thickness and diaphragm space. In the design of large longitudinal slope steel deck pavement, the interface security can be improved by reducing longitudinal slope, modulus of deck pavement or width of U rib; by increasing steel plate thickness or diaphragm spacing appropriately.
关键词
道路工程 /
大纵坡 /
钢桥面铺装 /
剪应力 /
有限元
Key words
road engineering /
large longitudinal slope /
steel deck pavement /
shear stress /
finite element method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KAINUMA S, JEONG Y S, AHN J H, et al. Behavior and Stress of Orthotropic Deck with Bulb Rib by Surface Corrosion[J]. Journal of Constructional Steel Research, 2015, 113: 135-145.
[2] 李洪军,丁庆军,赵明宇. 钢桥面铺装层组合结构性能研究[J]. 公路工程,2016,41(6):188-193.
[3] 钟科,陈飞,魏小皓,等. 基于加速加载试验的钢桥面铺装性能研究[J]. 公路交通科技,2017,34(11):50-56.
[4] 傅静刚,陆青清. 中小跨径钢桥面沥青柔性铺装层剪应力分析[J]. 市政技术,2015,33(1):64-67.
[5] 赵岩荆,周岚. 钢箱梁与桥面铺装层温度场协同变化规律分析[J]. 交通运输研究,2015,1(3):78-82.
[6] 李烨. 裂缝对钢桥面铺装受力性能的影响[J]. 佳木斯大学学报(自然科学版),2015,33(2):180-182.
[7] 李国芬,王宏畅,王勇,等. 基于修正Burgers模型的钢桥面铺装车辙有限元分析[J]. 林业工程学报,2016,1(5):120-125.
[8] KIM T W, BAEK J, LEE H J, et al. Effect of Pavement Design Parameters on the Behaviour of Orthotropic Steel Bridge Deck Pavements under Traffic Loading[J]. International Journal of Pavement Engineering, 2014, 15(5): 471-482.
[9] 吴昊. 大坡度匝道钢桥面铺装结构设计研究[D]. 南京:东南大学,2013.
[10] 祁文洋,孔晨光,于增义. 纵坡弯道桥面沥青铺装结构剪应力分析[J]. 华东交通大学学报,2014,31(3):18-22.
[11] 廖亚雄,陈修和,张玉斌,等. 考虑纵坡与制动效应的钢桥面铺装粘结层剪应力响应特性[J]. 长沙理工大学学报(自然科学版),2016,13(2):8-14.
[12] BOCCI E, CANESTRARI F. Experimental Evaluation of Shear Resistance of Improved Steel-Asphalt Interfaces[J]. Transportation Research Record Journal of the Transportation Research Board, 2013, 2370: 145-150.
[13] 刘云,钱振东. 立转式开启桥钢桥面铺装结构的应力状态分析[J]. 公路交通科技,2014,31(1):55-60.
[14] 彭小波. 动载下粘贴GFRP的环氧沥青混凝土钢桥面铺装受力分析[D]. 重庆:重庆交通大学,2017.
[15] REZAIGUIA A, OUELAA N, LAEFER D F, et al. Dynamic Amplification of a Multi- Span, Continuous Orthotropic Bridge Deck Under Vehicular Movement[J]. Engineering Structures, 2015, 100: 718-730.
[16] YOKOZEKI K, MIKI C. Fatigue Evaluation for Longitudinal-to-Transverse Rib Connection of Orthotropic Steel Deck by Using Structural Hot Spot Stress[J]. Welding in the World, 2016, 60(1): 83-92.
[17] 中华人民共和国交通运输部. 公路钢结构桥梁设计规范:JTG D64—2015[S]. 北京:人民交通出版社股份有限公司,2015.
[18] 中华人民共和国交通运输部. 公路工程技术标准:JTG B01—2014[S].北京:人民交通出版社股份有限公司,2014.
[19] 罗瑞林. 大纵坡钢桥面铺装结构力学研究[D]. 南京:东南大学,2017.
[20] 陈小兵. 基于裂缝形成规律的连续配筋混凝土路面结构设计方法研究[D]. 南京:东南大学,2013.
[21] 王惠文,孟洁. 多元线性回归的预测建模方法[J]. 北京航空航天大学学报,2007,33(4):500-504.
[22] 李昶,顾兴宇. 大跨径钢桥桥面铺装力学分析与结构设计[M]. 南京:东南大学出版社,2007:150-160.
[23] 刘京娟. 多元线性回归模型检验方法[J]. 湖南税务高等专科学校学报,2005,18(5):48-49.
[24] 黄卫,钱振东,程刚. 环氧沥青混凝土在大跨径钢桥面铺装中的应用[J]. 东南大学学报(自然科学版),2002,32(5):783-787.
基金
国家自然科学基金面上项目(51778142)