新能源小汽车的发展对交通拥堵的影响

张彭,雷方舒,朱珊,朱广宇

交通运输研究 ›› 2018, Vol. 4 ›› Issue (1) : 15-21.

PDF(1642 KB)
PDF(1642 KB)
交通运输研究 ›› 2018, Vol. 4 ›› Issue (1) : 15-21.
专题

新能源小汽车的发展对交通拥堵的影响

  • 张彭,雷方舒,朱珊,朱广宇
作者信息 +

Effect of New-Energy Cars Development onUrban Traffic Congestion

  • ZHANG Peng, LEI Fang-shu, ZHU Shan and ZHU Guang-yu
Author information +
文章历史 +

摘要

为了填补新能源小汽车对交通拥堵影响定量分析的研究空白,同时满足交通需求管理政策调 整的现实需求,提出了一种新的模型仿真方法。首先,从资源占用的角度对出行进行定义,并建立需求的多维联合分布;其次,将需求代入系统级路网模型仿真新能源小汽车保有量增加对路网 均速的影响,并将分析结果与增加同等规模燃油车的影响进行对比;最后对北京市延续实施现行 摇号政策的效果进行预测。结果显示,同样增量的新能源小汽车对拥堵的影响显著大于燃油车,在高峰时段和全天对路网均速影响程度之比分别大于1.2 和1.9;其他条件相对固定的前提下,北京 市2.3 年后普通工作日的拥堵状态将等同于当前尾号4、9 限行日的拥堵状态。这一研究成果为精准化、定制化的需求管理政策制定提供了理论依据。

Abstract

To fill in the blank of quantitative effect analysis of new-energy cars development on traffic congestion and meet the practical requirement of Transportation Demand Management (TDM for short) policy adjustment, a new simulation method was proposed. Firstly, the travel demand was redefined with the measurement of resource occupancy, and the joint distribution of travel demand was built to describe the travel characteristics. Secondly, the joint distribution of travel demand was introduced to the systemlevel model of road network to stimulate the variation of average speed of road network with the increasing of the vehicle quantity. The result was compared with the effect of increasing the same quantity fuel cars on the average speed of road network. The effect of current license-plate lottery policy of Beijing on traffic congestion was predicted at last. The result shows that new-energy cars make more contribution to traffic congestion than fuel cars with the same increment of quantity, and the ratios of effect comparison of two sorts of vehicles are more than 1.2 and 1.9 in rush hours and whole day respectively. About 2.3 years in the future, the congestion state of Beijing in a common day will equal to the day with restriction of tail number 4 and 9 at present. The proposed method is brand new in concerned area, which provides a theoretical basis for specific and goal-orientate TDM policy design.

关键词

新能源小汽车 / 需求管理 / 交通拥堵 / 模型仿真 / 节能减排

Key words

new-energy cars / travel demand management / traffic congestion / model simulation / en?ergy saving and emission reduction

引用本文

导出引用
张彭,雷方舒,朱珊,朱广宇. 新能源小汽车的发展对交通拥堵的影响[J]. 交通运输研究. 2018, 4(1): 15-21
ZHANG Peng, LEI Fang-shu, ZHU Shan and ZHU Guang-yu. Effect of New-Energy Cars Development onUrban Traffic Congestion[J]. Transport Research. 2018, 4(1): 15-21

参考文献

[1] 孙正良,江帆,虞立英. 新能源汽车发展对城市交通管理的影响[J]. 交通信息与安全, 2016,34(6):108-113.
[2] 龚露阳. 新能源汽车在交通运输行业推广应用策略研究[J]. 综合运输, 2017,39(2):35-42.
[3] KIM I, HWANG K Y, EOM J K. Building a TDM Impact Analysis System for the Introduction of Short-Term Congestion Management Program in Seoul[J]. Journal of Korean Soiety of Transportation, 1999, 17(1): 173-185.
[4] KIM I, HWANG K Y, CHO Y H. Application of Sub-Area Analysis Techniques for TDM Policy Analysis[J]. Journal of the Korean Society of Civil Engineers, 2000, 20(6D): 635-635.
[5] JONNALAGADDA N, FREEDMAN J, DAVIDSON W, et al. Development of Microsimulation Activity-Based Model for San Francisco: Destination and Mode Choice Models[J]. Transportation Research Record, 2001, 1777(1): 25-35.
[6] AXHAUSEN K W, GÄRLING T. Activity-Based Approaches to Travel Analysis[J]. Transport Reviews, 1992, 12(4): 323-341.
[7] BOWMAN J L, BEN-AKIVA M E. Activity-Based Disaggregate Travel Demand Model System with Activity Schedules[J]. Transportation Research(Part A: Policy and Practice), 2001, 35(1): 1-28.
[8] BEN-AKIVA M E, GAO S, WEI Z, et al. A Dynamic Traffic Assignment Model for Highly Congested Urban Networks[J]. Transportation Research(Part C: Emerging Technologies), 2012, 24(24): 62-82.
[9] CAREY M, WATLING D. Dynamic Traffic Assignment Approximating the Kinematic Wave Model: System Optimum, Marginal Costs, Externalities and Tolls[J]. Transportation Research(Part B: Methodological), 2012, 46(5): 634-648.
[10] DAGANZO C F. The Cell Transmission Model, Part Ⅱ: Network Traffic[J]. Transportation Research(Part B: Methodological), 1995, 29(2): 79-93.
[11] SUMALEE A, ZHONG R X, PAN T L, et al. Stochastic Cell Transmission Model(SCTM): A Stochastic Dynamic Traffic Model for Traffic State Surveillance and Assignment[J]. Transportation Research(Part B: Methodological), 2011, 45(3): 507-533.
[12] SZETO W Y. Enhanced Lagged Cell-Transmission Model for Dynamic Traffic Assignment[J]. Transportation Research Record, 2009, 2085(2085): 76-85.
[13] GEROLIMINIS N, DAGANZO C F. Existence of Urban-Scale Macroscopic Fundamental Diagrams: Some Experimental Findings[J]. Transportation Research(Part B: Methodological), 2008, 42(9): 759-770.
[14] DAGANZO C F. Urban Gridlock: Macroscopic Modeling and Mitigation Approaches[J]. Transportation Research(Part B: Methodological), 2007, 41(1): 49-62.
[15] GEROLIMINIS N, SUN J. Properties of a Well-Defined Macroscopic Fundamental Diagram for Urban Traffic[J]. Transportation Research(Part B: methodological), 2011, 45(3): 605-617.
[16] CASSIDY M J, JANG K, DAGANZO C F, et al. Macroscopic Fundamental Diagrams for Freeway Networks: Theory and Observation[J]. Transportation Research Record, 2011, 2260(2260): 8-15.
[17] KNOOP V L, LINT H V, HOOGENDOORN S P. Traffic Dynamics: Its Impact on the Macroscopic Fundamental Diagram[J]. Physica A: Statistical Mechanics and Its Applications, 2015,438(438): 236-250.
[18] KEYVAN-EKBATANI M, KOUVELAS A, PAPAMICHAIL I, et al. Exploiting the Fundamental Diagram of Urban Networks For Feedback- Based Gating[J]. Transportation Research(Part B: Methodological), 2012, 46(10): 1393-1403.
[19] YILDIRIMOGLU M, RAMEZANI M, Geroliminis N. Equilibrium Analysis and Route Guidance in Large-Scale Networks with MFD Dynamics[J]. Transportation Research (Part C: Emerging Technologies), 2015, 59: 404-420.
[20] 张彭,雷方舒,张晓松,等. 机动车出行需求管理对路网运行影响的系统分析方法[J]. 交通运输系统工程与信息,2017,17(1):227-234.

基金

国家重点研发计划项目(2017YCF0803305-06);国家自然科学基金项目(61572069);中央引导地方科技发展专项(Z161100005116006);北京市委市政府重点工作及应急项目预启动专项(Z171100004417024;Z161100001116094)

PDF(1642 KB)

Accesses

Citation

Detail

段落导航
相关文章

/