面向交通排放测算的跟驰模型优化方法

江婕, 宋国华, 孟冬利, 彭飞, 于雷

交通运输研究 ›› 2022, Vol. 8 ›› Issue (6) : 53-62.

交通运输研究 ›› 2022, Vol. 8 ›› Issue (6) : 53-62. DOI: 10.16503/j.cnki.2095-9931.2022.06.006

面向交通排放测算的跟驰模型优化方法

作者信息 +

Optimization of Car-Following Model for Traffic Emissions Measurement

  • JIANG Jie ,  
  • SONG Guo-hua ,  
  • MENG Dong-li ,  
  • PENG Fei ,  
  • YU Lei
Author information +
文章历史 +

摘要

为了消除跟驰模型用于交通排放测算产生的系统误差,提高微观交通仿真模型与交通排放模型融合应用于交通排放测算的准确性,引入衡量加速度变化率的参数急动度(jerk),提出一种考虑jerk分布特征的Wiedemann跟驰模型优化方法。通过对实际轨迹数据与车辆跟驰数据的拟合分析,建立各加速度区间下的jerk分布,并增设jerk约束对交通仿真模型生成轨迹进行优化。以北京市出租车轨迹数据和跟驰数据为例,测算结果表明:Wiedemann模型优化后,不同速度区间的车辆比功率(Vehicle Specific Power, VSP)分布误差平均降低1.2%,CO2, CO, THC, NOX等4种排放物的排放因子平均误差分别降低了16.9%, 118.3%, 27.0%, 20.5%,表明该优化方法能够有效改善原模型中不真实的加速度,降低排放测算误差。

Abstract

In order to eliminate the systematic error caused by car-following model used in traffic emission measurement, and improve the accuracy of traffic emission measurement from the integration of micro-traffic simulation and traffic emission model, this paper introduced the parameter jerk which was used to measure the acceleration change rate and proposed an optimization method of Wiedemann car-following model considering the characteristics of jerk distribution. By analyzing the field trajectory data and car-following data, the jerk distribution under each acceleration interval was established, and the jerk constraint was added to optimize the trajectory generated by traffic simulation model. Based on the trajectory data and car-following data collected from taxis in Beijing, the results showed that after the optimization of the Wiedemann model, the distribution error of VSP(Vehicle Specific Power) in different speed interval was reduced by 1.2% on average, and the relative errors of emission factors decreased by 16.9%, 118.3%, 27.0% and 20.5% for CO2, CO, THC and NOx respectively, which means that the optimization method can effectively correct the unrealistic acceleration from the original model and reduce the emission measurement error.

关键词

Wiedemann跟驰模型 / 车辆比功率 / 急动度 / 排放测算 / 车辆轨迹数据

Key words

Wiedemann car-following model / Vehicle Specific Power(VSP) / jerk / emission estimation / car trajectory data

引用本文

导出引用
江婕, 宋国华, 孟冬利, . 面向交通排放测算的跟驰模型优化方法[J]. 交通运输研究. 2022, 8(6): 53-62 https://doi.org/10.16503/j.cnki.2095-9931.2022.06.006
JIANG Jie, SONG Guo-hua, MENG Dong-li, et al. Optimization of Car-Following Model for Traffic Emissions Measurement[J]. Transport Research. 2022, 8(6): 53-62 https://doi.org/10.16503/j.cnki.2095-9931.2022.06.006

参考文献

[1]
单肖年, 陈小鸿. 交通仿真模型融合微观车辆排放模型研究综述[J]. 交通运输工程与信息学报, 2021, 19(2):11-24.
[2]
CHEN K, YU L. Microscopic traffic-emission simulation and case study for evaluation of traffic control strategies[J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7(1): 93-99.
[3]
XIE Y C, CHOWDHURY M, BHAVSAR P, et al. An integrated modeling approach for facilitating emission estimations of alternative fueled vehicles[J]. Transportation Research Part D: Transport and Environment, 2012, 17(1): 15-20.
[4]
MISRA A, ROORDA M J, MACLEAN H L. An integrated modelling approach to estimate urban traffic emissions[J]. Atmospheric Environment, 2013, 73: 81-91.
[5]
ABOU-SENNA H, RADWAN E, WESTERLUND K, et al. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway[J]. Journal of the Air & Waste Management Association, 2013, 63(7): 819-831.
[6]
XIONG C F, ZHU Z, HE X, et al. Developing a 24-hour large-scale microscopic traffic simulation model for the before-and-after study of a new tolled freeway in the Washington, D.C.-Baltimore Region[J]. Journal of Transportation Engineering, 2015, 141(6): 5015001.1-5015001.11.
[7]
SAMARAS C, TSOKOLIS D, TOFFOLO S, et al. Improving fuel consumption and CO2 emissions calculations in urban areas by coupling a dynamic micro traffic model with an instantaneous emissions model[J]. Transportation Research Part D: Transport and Environment, 2017, 65: 772-783.
[8]
巴兴强, 徐孟发, 李洪涛. 基于MOVES的城市道路交叉口组织优化排放分析[J]. 重庆理工大学学报(自然科学), 2018, 32(6):115-121.
[9]
SONG G H, YU L, GENG Z B. Optimization of Wiedemann and Fritzsche car-following models for emission estimation[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 318-329.
[10]
LU H Y, SONG G H, YU L. The "acceleration cliff ": an investigation of the possible error source of the VSP distributions generated by Wiedemann car-following model[J]. Transportation Research Part D: Transport and Environment, 2018, 65: 161-177.
[11]
VITI F, HOOGENDOORN S P, ZUYLEN H J V, et al. Speed and acceleration distributions at a traffic signal analyzed from microscopic real and simulated data[C]// 2008 11th International IEEE Conference on Intelligent Transportation Systems. Beijing: IEEE, 2008: 651-656.
[12]
SONG G H, YU L, ZHANG Y. H Applicability of traffic microsimulation models in vehicle emissions estimates[J]. Transportation Research Record: Journal of the Transportation Research Board, 2012, 2270(1): 132-141.
[13]
张嫣红. 基于微观交通仿真模型的排放测算适用性研究[D]. 北京: 北京交通大学, 2011.
[14]
MENG D L, SONG G H, WU Y Z, et al. Modification of Newell′s car-following model incorporating multidimensional stochastic parameters for emission estimation[J]. Transportation Research Part D: Transport and Environment, 2021, 91: 102692.
[15]
耿中波. 面向排放测算的Wiedemann和Fritzsche跟驰模型优化研究[D]. 北京: 北京交通大学, 2014.
[16]
PUNZO V, BORZACCHIELLO M T, CIUFFO B. On the assessment of vehicle trajectory data accuracy and application to the Next Generation SIMulation (NGSIM) program data[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1243-1262.
[17]
GE H X, PENG J Z, WEI W, et al. The car following model considering traffic jerk[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 433(1): 274-278.
[18]
ZHAI C, WU W T. A new car-following model considering driver′s characteristics and traffic jerk[J]. Nonlinear Dynamics, 2018, 93(4): 2185-2199.
[19]
WIEDEMANN R, REITER U. Microscopic traffic simulation: the simulation system mission, background and actual state[R]. Brussels: CEC, 1992,2.
[20]
WANG J H, RAKHA H A, FADHLOUN K. Validation of the Rakha-Pasumarthy-Adjerid car-following model for vehicle fuel consumption and emission estimation applications[J]. Transportation Research Part D: Transport and Environment, 2017, 55: 246-261.
[21]
ZHANG Z, SONG G, ZHAI Z, et al. How many trajectories are needed to develop facility- and speed-specific vehicle-specific power distributions for emission estimation? Case study in Beijing[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673(11): 779-790.

Accesses

Citation

Detail

段落导航
相关文章

/