基于贝叶斯网络的地铁设备故障诊断方法
A Bayesian Network-based Equipment Fault Diagnosis Method for Urban Rail Transit
故障诊断时间在目前地铁设备故障修复总时长中占比较高,如何有效缩短故障诊断时间成为提高地铁设备故障维修效率的关键。鉴于此,为快速分析地铁设备系统中的薄弱环节,以故障诊断时间为判定标准,提出基于贝叶斯网络的地铁设备故障诊断算法,将贝叶斯网络计算的故障概率与该种故障排查时间相结合作为预期故障诊断时间指标,并以该指标值从低到高依序进行故障排查诊断。然后基于调研获取的全国17家地铁公司列车客室门故障数据,利用蒙特卡洛仿真和3D数字孪生对比人工排查和本算法在故障诊断方面的效率差异。算例结果显示,利用本算法定位故障点时所消耗的时间是人工排查时长的43%~48%,表明基于故障诊断时间的贝叶斯网络地铁设备故障诊断算法能快速分析出系统中的薄弱环节,提高地铁设备故障的维修效率。
The time of fault diagnosis accounts for a large proportion in the process of fault repair of subway equipment at present. How to shorten the time of fault diagnosis effectively becomes the key point to improve the efficiency of fault repair of subway equipment. Given this, in order to quickly analyze the weak links in subway system, taking the fault diagnosis time as the judgment standard, a fault diagnosis algorithm of subway equipment based on Bayesian network was proposed. The fault probability calculated by the Bayesian network was combined with the troubleshooting time of the fault as the expected fault diagnosis time index, and the fault diagnosis was performed based on the fault diagnosis time index value from low to high. Based on the fault data of passenger doors of 17 metro companies in China, the efficiency difference between manual troubleshooting and this algorithm in fault diagnosis was compared by using Monte Carlo simulation and 3D digital twinning. The results show that the time consumed by the Bayesian network model fault diagnosis algorithm in locating the fault point is 43%~48% of time consumed by the manual troubleshooting. It indicates that the Bayesian network fault diagnosis algorithm based on fault diagnosis time can quickly analyze the weak links in the subway system and improve the maintenance efficiency.
地铁设备 / 故障树 / 贝叶斯网络 / 故障诊断 / 机器算法
subway equipment / fault tree / Bayesian network / fault diagnosis / machine algorithm
| [1] |
张恒业. 关于城市轨道交通运营安全管理的探讨[J]. 中国设备工程, 2021(10):26-27.
|
| [2] |
谢明军, 何剑峰, 胡小溪, 等. 基于故障日志的城轨地面信号故障诊断[J]. 北京交通大学学报, 2020, 44(5):27-35.
|
| [3] |
赵奕, 吴川, 宗志祥. 基于故障树的城市轨道交通运营可靠性分析[J]. 城市公共交通, 2020(1):32-35.
|
| [4] |
王宇, 刘若晨. 基于主元分析-概率神经网络的车辆受电弓故障诊断[J]. 城市轨道交通研究, 2021, 24(1):88-92.
|
| [5] |
|
| [6] |
周巧莲, 金碧筠, 冒玲丽, 等. 基于贝叶斯网络地铁车门系统可靠性分析和故障诊断[J]. 沈阳工业大学学报, 2014, 36(4):441-445.
|
| [7] |
崔袁丁, 孟学雷. 基于贝叶斯网络的铁路旅客服务质量评价[J]. 交通运输研究, 2017, 3(5):57-64.
|
| [8] |
|
| [9] |
李兴运, 齐金平. 基于模糊贝叶斯网络的受电弓系统可靠性分析[J]. 铁道科学与工程学报, 2018, 15(6):1383-1390.
|
| [10] |
|
| [11] |
株洲南车时代电气股份有限公司. 轨道交通可靠性、可用性、可维修性和安全性规范及示例:GB/T 21562—2008[S]. 北京: 中国标准出版社, 2008.
|
| [12] |
|
| [13] |
张明明, 张和生, 刘洋, 等. 基于故障树与贝叶斯网络的高速动车电机组早期故障率估计[J]. 北京交通大学学报, 2021, 45(6):51-57.
|
| [14] |
寇兴怡, 帅斌, 黄文成. 基于贝叶斯网络的高速动车组运营故障分析[J]. 中国安全生产科学技术, 2020, 16(4):63-69.
|
| [15] |
杨昌昊, 胡小建, 竺长安. 从故障树到故障贝叶斯网映射的故障诊断方法[J]. 仪器仪表学报, 2009, 30(7):1481-1486.
|
| [16] |
王文焕, 郭鹏, 祝洁, 等. 基于故障树及贝叶斯网络的继电保护系统风险评估及故障定位方法[J]. 电力科学与技术学报, 2021, 36(4):81-90.
|
| [17] |
陈东宁, 姚成玉, 党振. 基于T-S模糊故障树和贝叶斯网络的多态液压系统可靠性分析[J]. 中国机械工程, 2013, 24(7):899-905.
|
| [18] |
郑姝婷. 基于贝叶斯网络的地铁列车制动系统可靠性分析[D]. 北京: 北京交通大学, 2018.
|
/
| 〈 |
|
〉 |