公共交通乘客换乘时长阈值及换乘行为特征分析

陈丽欣, 钟鸣, 潘晓锋, 钟意

交通运输研究 ›› 2022, Vol. 8 ›› Issue (2) : 68-78.

交通运输研究 ›› 2022, Vol. 8 ›› Issue (2) : 68-78. DOI: 10.16503/j.cnki.2095-9931.2022.02.008
研究论文

公共交通乘客换乘时长阈值及换乘行为特征分析

作者信息 +

Transfer Time Threshold and Transfer Behavior Characteristics of Public Transport Passengers

  • CHEN Li-xin 1, 2 ,  
  • ZHONG Ming 1, 2 ,  
  • PAN Xiao-feng 1, 2 ,  
  • ZHONG Yi 1, 2
Author information +
文章历史 +

摘要

为细化研究公共交通乘客的换乘行为,基于公交IC卡数据,提出了一种区分换乘模式、公共交通站对及线路的乘客换乘时长阈值计算方法。该方法首先设置换乘空间阈值筛选换乘站点对,然后根据每条公交线路的发车时刻计算相应的候车时间阈值,通过构建四阶段模型计算乘客在换乘站点对内的步行时间,进而产生每个换乘站点对之间不同公交线路的换乘时长阈值。基于该方法,采用武汉市公交IC卡数据,分析乘客的换乘时长阈值及换乘行为特征。结果显示,公交乘客的换乘时长阈值和换乘时长存在明显的空间差异性,不同公共交通站点对及线路的换乘时长阈值与其所在空间位置显著相关;乘客的换乘时长服从对数正态分布;常规公交之间的换乘量(约占换乘总量的70.2%)远超常规公交与轨道交通之间的换乘量(约占换乘总量的29.8%)。基于本方法分析乘客的换乘行为,可避免使用传统的固定阈值判别乘客换乘行为造成的误差,提高辨识结果的准确性。

Abstract

In order to study the transfer behaviors of public transport passengers in detail, based on public transport IC card data, a method was proposed to calculate the transfer time threshold, which could distinguish the transfer mode, station pairs and transit lines. Firstly, transfer space thresholds were identified to select transfer station pairs; secondly, waiting time thresholds of each lines were calculated based on their corresponding departure time; thirdly, passengers′ transfer walking time thresholds were calculated using four-step method; finally, transfer time thresholds of different transit lines between each transfer station pair could be calculated. Based on the proposed calculation method, this paper used IC card data of Wuhan public transport system to analyze passengers′ transfer time thresholds and transfer behaviors. The results showed that the transfer time thresholds and transfer behaviors were significantly spatial-dependent; the transfer time thresholds between different station pairs or in different transit lines were significantly correlated with their spatial locations; the transfer time was log-normal distributed; the amount of transfer trips between bus-to-bus (accounting for about 70.2%) was great larger than the amount of transfer trips between bus-to-metro and metro-to-bus (accounting for about 29.8%). Based on the method of transfer time threshold proposed in this paper, bias caused by the traditional fixed transfer time threshold can be avoided and the accuracy can be improved when identifying passengers′ transfer behaviors.

关键词

公共交通 / 换乘时长阈值 / 换乘行为 / 公交IC卡数据 / 武汉市

Key words

public transport / transfer time threshold / transfer behavior / public transport IC card data / Wuhan City

引用本文

导出引用
陈丽欣, 钟鸣, 潘晓锋, . 公共交通乘客换乘时长阈值及换乘行为特征分析[J]. 交通运输研究. 2022, 8(2): 68-78 https://doi.org/10.16503/j.cnki.2095-9931.2022.02.008
CHEN Li-xin, ZHONG Ming, PAN Xiao-feng, et al. Transfer Time Threshold and Transfer Behavior Characteristics of Public Transport Passengers[J]. Transport Research. 2022, 8(2): 68-78 https://doi.org/10.16503/j.cnki.2095-9931.2022.02.008

参考文献

[1]
彭飞, 宋国华, 朱珊. 城市公共交通常乘客通勤出行提取方法[J]. 交通运输系统工程与信息, 2021, 21(2):158-165,172.
[2]
NAVARRETE F J, DE DIOS ORTÚZAR J. Subjective valuation of the transit transfer experience: the case of Santiago de Chile[J]. Transport Policy, 2013, 25: 138-147.
[3]
ZHAO D, WANG W, LI C Y, et al. Recognizing metro-bus transfers from smart card data[J]. Transportation Planning and Technology, 2019, 42(1): 70-83.
[4]
崔诚靓. 基于公交IC卡与GPS数据的乘客使用特征分析--以上海市为例[J]. 交通与运输, 2020, 33(z1):231-235.
[5]
WANG Z J, LIU Y, CHEN F. Evaluation and improvement of the interchange from bus to metro using smart card data and GIS[J]. Journal of Urban Planning and Development, 2018, 144(2): 05018004.
[6]
MA X W, JI Y J, YANG M Y, et al. Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data[J]. Transport Policy, 2018, 71(11): 57-69.
[7]
陈嘉超, 宋程. 基于聚类分析法的地铁与常规公交换乘客流分析[J]. 科技和产业, 2018, 18(5):100-104.
[8]
管娜娜, 王波. 基于公交IC卡数据的成都市地铁与常规道路公交换乘客流特征分析[J]. 城市轨道交通研究, 2018, 21(9):148-150.
[9]
杨湖平. 基于数据融合的公共自行车接驳公交行为辨识[J]. 科学技术与工程, 2022, 22(3):1257-1264.
[10]
HUANG Z, XU L, LIN Y, et al. Citywide metro-to-bus transfer behavior identification based on combined data from smart cards and GPS[J]. Applied Sciences, 2019, 9(17): 3597.
[11]
方秋水, 李之明, 徐锋, 等. 基于一卡通数据的公交换乘行为分析方法[J]. 交通节能与环保, 2019, 15(6):43-46.
[12]
LARSEN O I, SUNDE Ø. Waiting time and the role and value of information in scheduled transport[J]. Research in Transportation Economics, 2008, 23(1): 41-52.
[13]
HUSS A, BEEKHUIZEN J, KROMHOUT H, et al. Using GPS-derived speed patterns for recognition of transport modes in adults[J]. International Journal of Health Geographics, 2014, 13: 1-8.
[14]
王乃军. 健康中年人不同速度长程行走时步态特征的研究[D]. 武汉: 湖北大学, 2010.
[15]
黄欢, 张哲, 张春艳. 水质氨氮的测定能力验证结果统计和评价分析[J]. 广州化工, 2022, 50(5):117-121.
[16]
冯树民, 贾佃精, 胡宝雨. 中小城市居民出行链特征分析[J]. 武汉理工大学学报, 2015, 37(1):51-55,94.

基金

国家自然科学基金项目(52172309)

Accesses

Citation

Detail

段落导航
相关文章

/