基于手机信令的全社会公路旅客出行量 测算方法

夏 晶,于丹阳,郑鑫臻,崔艺馨,朱 静

交通运输研究 ›› 2021, Vol. 7 ›› Issue (3) : 102-110.

交通运输研究 ›› 2021, Vol. 7 ›› Issue (3) : 102-110. DOI: 10.16503/j.cnki.2095-9931.2021.03.012

基于手机信令的全社会公路旅客出行量 测算方法

  • 夏 晶1,于丹阳1,郑鑫臻2,崔艺馨2,朱 静2
作者信息 +

Calculation Method of Social Highway Passenger Trip Volume Based on Mobile Signaling

  • XIA Jing1, YU Dan-yang1, Zheng Xin-zhen2, Cui Yi-xin2, Zhu Jing2
Author information +
文章历史 +

摘要

为了准确统计全社会公路旅客出行量,针对传统公路客运量统计口径小、覆盖范围不全、无法全面反映公路旅客实际出行情况的问题,基于手机信令数据,通过用户位置识别、旅客出行链整理、旅客出行方式判别、城区范围划分及数据多层扩样,构建了全社会公路旅客出行量测算方法。为了验证所建方法的准确性和合理性,以京津冀地区的手机信令数据为例,对全社会公路旅客出行量进行了测算,同时利用手机用户性别、年龄标签进行自校核,并与官方数据进行对比。结果表明,在跨城市出行统计方面,基于手机信令数据的全社会公路旅客出行量测算方法较传统方法能更加全面、准确地反映全社会公路旅客的实际出行情况。

Abstract

In order to accurately calculate the highway passenger trip volume in the whole society, considering the problems of traditional highway passenger trips statistics which has small caliber, incomplete coverage and is unable to fully reflect the actual travel situation of highway passengers, a new calculation method of highway passenger trip volume in the whole society was put forward based on mobile signaling by identifying passenger position, analyzing passenger travel chain, discriminating passenger trip mode, dividing urban areas and expanding multi-layer data. In order to verify the accuracy and rationality of the proposed method, taking the mobile signaling data of passengers in Beijing, Tianjin and Hebei province as an example, the total number of highway passenger trips in the whole society was calculated, and self-checked by the data of gender and age of mobile users, and finally compared with the official data. The results show that, in terms of cross-city travel statistics, the method based on mobile signaling data could more comprehensively and accurately reflect the actual travel situation of highway passengers than the traditional method.

关键词

手机信令;公路旅客出行量;一次出行;出行方式;数据校核

Key words

mobile signaling; highway passenger trip volume; one trip; travel mode; data checking

引用本文

导出引用
夏 晶,于丹阳,郑鑫臻,崔艺馨,朱 静. 基于手机信令的全社会公路旅客出行量 测算方法[J]. 交通运输研究. 2021, 7(3): 102-110 https://doi.org/10.16503/j.cnki.2095-9931.2021.03.012
XIA Jing, YU Dan-yang, Zheng Xin-zhen, Cui Yi-xin, Zhu Jing. Calculation Method of Social Highway Passenger Trip Volume Based on Mobile Signaling[J]. Transport Research. 2021, 7(3): 102-110 https://doi.org/10.16503/j.cnki.2095-9931.2021.03.012

参考文献

[1]  CACERES N, WIDEBERG J P, BENITEZ F G. Deriving origin-destination data from a mobile phone network[J]. IET Intelligent Transport Systems, 2007, 1(1): 15-26.
[2]  RORIJE B. Calibrating OD-matrices with public transport and mobile phone data[D]. Enschede: University of Twente, 2011.
[3]  GONZáLEZ M C, HIDALGO C A, BARABáSI A L. Understanding individual human mobility patterns[J]. Nature, 2008, 453 (5): 779-782.
[4]  YEHUDA J G, SHLOMO B, CHARLES S, et al. Intercity person trip tables for nationwide transportation planning in Israel obtained from massive cell phone data[J]. Transportation Research Record Journal of the Transportation Research Board, 2009, 2121(1): 145-151.
[5]  BLOCH A, ERDIN R, MEYER S, et al. Battery-efficient transportation mode detection on mobile devices[C]// 2015 16th IEEE International Conference on Mobile Data Management. Pittsburgh: IEEE, 2015: 185-190.
[6]  CALABRESE F, PREEIRA F C, LORENZO G D, et al. The geography of taste: analyzing cell-phone mobility and social events[C]//8th International Conference. Helsinki: Pervasive Computing, 2010: 22-37.
[7]  SCHLAICH J, OTTERST?TTER T, FRIEDRICH M. Generating trajectories from mobile phone data[C]//Transportation Research Board. TRB 89th Annual Meeting Compendium of Papers. Washington DC:Transportation Research Board of the National Academies, 2010: 1-17.
[8]  TETTAMANTI T, DEMETER H, VARGA I. Route choice estimation based on cellular signaling data[J]. Acta Polytechnica Hungarica, 2012, 9(4):207-220.
[9]  冉斌. 手机数据在交通调查和交通规划中的应用[J]. 城市交通,2013,11(1):72-81,32.
[10] 贾会林,杨勇. 基于手机信令的人口出行分布调查[J]. 现代电信科技,2013,43(9):35-38,44.
[11] 胡斌杰,詹益旺. 基于手机信令的道路交通流量状态识别及预测[J]. 移动通信,2015,39(10):17-21.
[12] YUAN Y M, GUAN W, QIU W. Map matching of mobile probes based on handover location[C]// 2010 International Conference on Networking, Sensing and Control. Chicago: IEEE, 2010: 587-592.
[13] 倪玲霖,张帅超,陈喜群. 基于手机信令数据的居民出行空间效应[J]. 浙江大学学报(工学版),2017,51(5):887-895.
[14] DUAN Z Y, LIU L, WAN S. MobilePulse: dynamic profiling of land use pattern and OD matrix estimation from 10 million individual cell phone records in Shanghai[C]// Proceedings of 19th International Conference on Geoinformatics. Shanghai: IEEE, 2011: 1-6.
[15] 赖见辉,陈艳艳,张政,等.基于手机定位信息的城市人群空间流动特性表征方法[C]//2016年中国城市交通规划年会论文集. 北京:中国城市规划学会城市交通规划学术委员会,2016:2091-2103.
[16] 毛晓汶. 基于手机信令技术的区域交通出行特征研究[D]. 重庆:重庆交通大学, 2014.
[17] 李佳. 基于手机定位数据的动态 OD 矩阵获取方法研究[D]. 昆明:昆明理工大学, 2013.
[18] 李祖芬,于雷,高永,等. 基于手机信令定位数据的居民出行时空分布特征提取方法[J]. 交通运输研究,2016,2(1):51-57.
[19] 宋璐. 基于手机定位数据的交通OD分布研究[D]. 南京:东南大学, 2015.
[20] 王超. 基于手机定位数据的动态OD获取和评价方法研究[D]. 长春:吉林大学, 2017.
[21] 陆振波,龙振,余启航. 基于手机信令数据的昆山市职住分布与通勤特征分析[J]. 现代城市研究,2019,34(3):50-55.

Accesses

Citation

Detail

段落导航
相关文章

/