基于改进遗传算法并考虑尾气排放的公交组合调度

金梦宇,何胜学,张思潮

交通运输研究 ›› 2021, Vol. 7 ›› Issue (2) : 55-65.

交通运输研究 ›› 2021, Vol. 7 ›› Issue (2) : 55-65. DOI: 10.16503/j.cnki.2095-9931.2021.02.007

基于改进遗传算法并考虑尾气排放的公交组合调度

  • 金梦宇,何胜学,张思潮
作者信息 +

Bus Combinational Scheduling Based on Improved Genetic Algorithm and Considering Exhaust Emission

  • JIN Meng-yu, HE Sheng-xue, ZHANG Si-chao
Author information +
文章历史 +

摘要

为在提升公交运行效率和服务水平的同时减小其对环境的负面影响,针对公交单线路单向客流差异较大以及双向客流不均衡的现象,建立以乘客时间总成本、公交车运行总成本与尾气排放成本之和最小为目标的跳站与区间车组合调度模型。考虑公交停靠方案与发车频率在优化过程中的重要性差异,提出一种概率随迭代次数变化的动态概率遗传算法,对最佳停靠方案与发车频率进行求解。通过算例分析得出:该公交组合调度方案的总成本比单一全程车调度方案节省4.49%,虽然乘客时间总成本上升了5.04%,但公交运行总成本下降了7.12%,尾气排放成本下降了8.22%;提出的动态概率遗传算法的求解时间小于2min,表明此算法适用于求解有明显主次影响关系的多要素优化问题。

Abstract

In order to improve the operation efficiency and service level of public transport, and reduce its negative impact on environment at the same time, this paper proposed a combinational scheduling model of bus stop-skipping strategy and short-turning strategy considering the phenomenon of great difference of one-way passenger flow and unbalanced two-way passenger flow on a single bus line. This model integrated to minimize the sum of the time cost of passengers, the total operating cost of buses and the exhaust emission cost. According to the difference of importance between bus stop scheme and departure frequency in the optimization process, this paper proposed a dynamic probabilistic genetic algorithm with probability varying with iteration times to solve the optimal bus stop scheme and departure frequency. The calculation analysis of one example shows that the combinational scheduling scheme can save 4.49% of the total cost compared with the scheduling scheme having single bus running whole process. Although the total time cost of passengers increases by 5.04%, the total operating cost of buses decreases by 7.12% and the exhaust emission cost reduces by 8.22%. The solution time of the dynamic probabilistic genetic algorithm is less than 2 minutes, which demonstrates that the algorithm is suitable for solving the multi-element optimization problems with obvious primary and secondary effects quickly.

关键词

公交调度;跳站;区间车;尾气排放;遗传算法

Key words

bus scheduling; stop-skipping; short-turning; exhaust emission; genetic algorithm

引用本文

导出引用
金梦宇,何胜学,张思潮. 基于改进遗传算法并考虑尾气排放的公交组合调度[J]. 交通运输研究. 2021, 7(2): 55-65 https://doi.org/10.16503/j.cnki.2095-9931.2021.02.007
JIN Meng-yu, HE Sheng-xue, ZHANG Si-chao. Bus Combinational Scheduling Based on Improved Genetic Algorithm and Considering Exhaust Emission[J]. Transport Research. 2021, 7(2): 55-65 https://doi.org/10.16503/j.cnki.2095-9931.2021.02.007

参考文献

[1] 巫威眺,靳文舟,邹冰洁. 运力限制下区间车与全程车的组合调度模型[J]. 北京工业大学学报,2013,39(10):1545-1551.
[2] 俞礼军,余志强. 基于异质性出行需求的公交线路组合调度研究[J]. 广西大学学报(自然科学版),2019,44(6):1562-1572.
[3] LIU Z Y, YAN Y D, QU X B, et al. Bus stop-skipping scheme with random travel time[J]. Transportation Research Part C: Emerging Technologies, 2013, 35: 46-56.
[4] LEIVA C, MUNOZ J C, GIESEN R, et al. Design of limited-stop services for an urban bus corridor with capacity constraints[J]. Transportation Research Part B: Methodological, 2010, 44(10): 1186-1201.
[5] SITE P D, FILIPPI F. Service optimization for bus corridors with short-turn strategies and variable vehicle size[J]. Transportation Research Part A: Policy & Practice, 1998, 32(1): 19-38.
[6] TIRACHINI A, CORTéS C E, JARA-DíAZ S R. Optimal design and benefits of a short turning strategy for a bus corridor[J]. Transportation, 2011, 38: 169-189.
[7] 韩笑宓. 考虑公交车尾气排放的常规公交组合调度优化研究[D]. 北京:北京交通大学,2019.
[8] ZHANG H, ZHAO S Z, LIU H S, et al. Design of integrated limited-stop and short-turn services for a bus route[J]. Mathematical Problems in Engineering: Theory, Methods and Applications, 2016(2): 1-9.
[9] YU Q, LI T Z. Evaluation of bus emissions generated near bus stops[J]. Atmospheric Environment, 2014, 85: 195-203
[10] MAHESH S, RAMADURAI G. Analysis of driving characteristics and estimation of pollutant emissions from intra-city buses[J]. Transportation Research Procedia, 2017, 27: 1211-1218.
[11] 王志强,张翠平,汪洋,等. CNG公交车道路排放与行驶工况相关性研究[J].中国测试,2018,44(11):50-55.
[12] ALAM A, DIAB E, M.EL-GENEIDY A, et al. A simulation of transit bus emissions along an urban corridor: evaluating changes under various service improvement strategies[J]. Transportation Research Part D: Transport and Environment, 2014, 31: 189-198.
[13] 杨鹏史,刘永红,黄玉婷,等. 基于ES-VSP分布的交通状态对公交车动态排放的影响[J]. 环境科学研究,2017,30(11):1793-1800.
[14] 潘兴博. 城市常规公交运力结构配置优化模型研究[D]. 长春:吉林大学,2016.
[15] 瞿何舟. 城市公交线路组合服务模式优化研究[D]. 成都:西南交通大学,2017.

基金

国家自然科学基金项目(71801153; 71871144);上海市自然科学基金项目(18ZR1426200)

Accesses

Citation

Detail

段落导航
相关文章

/